APPENDIX J: SUPPLEMENTAL APPENDIX

This Supplemental Appendix contains information and data on which the Final Rule for residential central air conditioners and heat pumps is based. Most data contained in this appendix provide results based on the use of Reverse Engineering manufacturing cost data. The tables and figures presented in this appendix usually have a corresponding table or figure from one of the chapters in the Technical Support Document (TSD). Tables and figures in this appendix with corresponding information in the TSD use the same table or figure numbers as the TSD but with an "S" added after the number to designate it as supplemental information. For example, Table 5.28 from Chapter 5 of the TSD that provides average repair costs based on ARI mean manufacturing cost data is shown in this appendix as Table 5.28S with the results based on Reverse Engineering manufacturing cost data. There are some tables and figures in this appendix that do not have a corresponding table or figure from the TSD. In these cases, the supplemental tables and figures are identified with the table or figure number from the TSD that the new data most closely pertains to and an "A" is added after the number to designate it as additional information.

J.1 SUPPLEMENTAL TABLES AND FIGURES TO CHAPTER 5

Table 5.3S Reverse Engineering Standard-Level Manufacturer Cost Multipliers

	Split A/C	Split HP	Package A/C	Package HP
SEER	Most Likely Value	Most Likely Value	Most Likely Value	Most Likely Value
10	1.00	1.00	1.00	1.00
11	1.12	1.05	1.09	1.08
12	1.28	1.13	1.16	1.13
13	1.44	1.30	1.43	1.38
18ª	1.99	1.94	1.87	1.86

^a Cost multipliers for 18 SEER are based on data for 15 SEER.

Table 5.8S Weighted-Average Total Installed Costs for Central Air Conditioners and Heat Pumps based on Reverse Engineering Manufacturing Costs

				1
	Split A/C	Package A/C	Split HP	Package HP
SEER	1998\$	1998\$	1998\$	1998\$
10	\$2,236	\$2,607	\$3,668	\$3,599
11	\$2,327	\$2,696	\$3,723	\$3,691
12	\$2,449	\$2,765	\$3,812	\$3,748
13	\$2,571	\$3,032	\$4,000	\$4,034
18	\$2,990	\$3,466	\$4,707	\$4,584

Table 5.288 Central Air Conditioner and Heat Pump Average Repair Costs based on Reverse Engineering Manufacturing Costs

		0 0		
SEER	Split System A/C	Single Package A/C	Split System HP	Single Package HP
Btu/W·hr	1998\$	1998\$	1998\$	1998\$
10	\$26	\$34	\$38	\$39
11	\$26	\$34	\$38	\$39
12	\$27	\$34	\$38	\$40
13	\$27	\$35	\$39	\$40
18	\$46	\$57	\$66	\$66

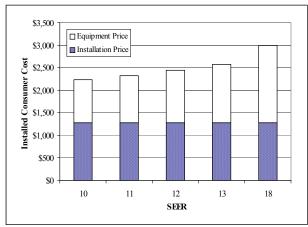


Figure 5.29S Split A/C: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs

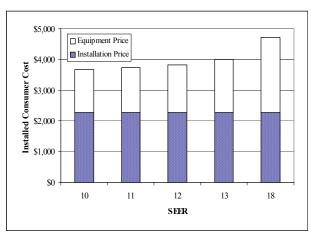


Figure 5.328 Split HP: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs

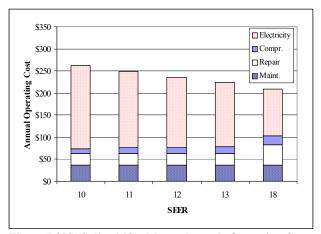


Figure 5.30S Split A/C: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs

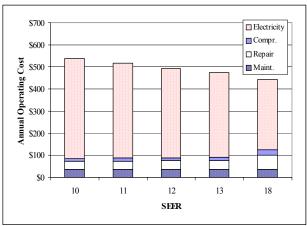


Figure 5.33S Split HP: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs

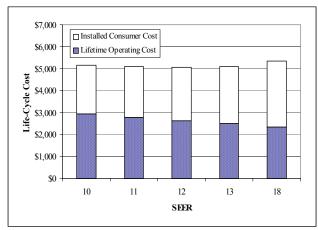
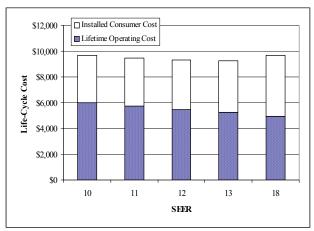



Figure 5.31S Split A/C: Mean Life-Cycle Costs based on Rev Figure 5.34S Split HP: Mean Life-Cycle Costs based on Rev **Eng Manufacturing Costs**

Eng Manufacturing Costs

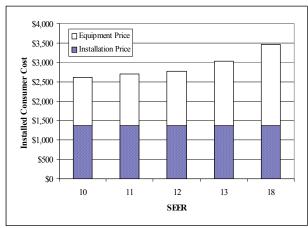


Figure 5.35S Pack A/C: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs

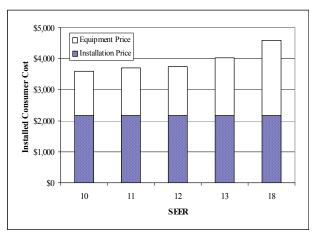


Figure 5.38S Pack HP: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs

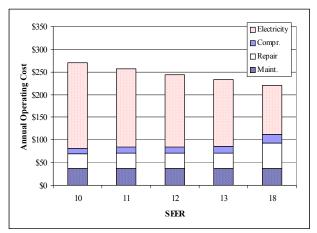


Figure 5.36S Pack A/C: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs

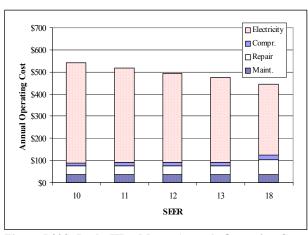


Figure 5.39S Pack HP: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs

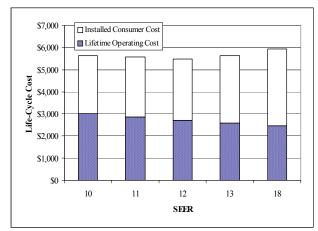


Figure 5.378 Pack A/C: Mean Life-Cycle Costs based on Rev Eng Manufacturing Costs

Figure 5.40S Pack HP: Mean Life-Cycle Costs based on Rev Eng Manufacturing Costs

Table 5.35S Summary of LCC Results for Split System Air Conditioners based on Reverse Engineering Manufacturing Costs

			S	hown by Pe	Cha ercentiles of	nge in LCC f the Distril	Change in LCC from Baseline Shown by Percentiles of the Distribution of Results (values in 1998\$)	eline esults (valu	ıes in 1998 s	\$)			Percent of Households
Efficiency Level (SEER)	0%	10%	20%	30%	40%	50%	60%	% 0.7	80%	%06	100%	Mean	with reduced LCC
11	\$-2,060	\$-301	\$-160	\$-90	\$-44	\$-14	\$10	\$31	\$51	\$71	\$168	\$-75	56%
12	\$-4,382	\$-525	\$-276	\$-147	\$-64	\$-4	\$43	\$83	\$121	\$160	\$344	\$-113	51%
13	\$-4,372	\$-676	\$-345	\$-157	\$-46	\$35	\$99	\$155	\$206	\$262	\$530	\$-113	45%
18	\$-9,321	\$-922	\$-282	\$47	\$250	\$390	\$508	\$611	\$719	\$866	\$1,840	\$137	28%

Table 5.36S Summary of LCC Results for Split System Heat Pumps based on Reverse Engineering Manufacturing Costs

19/99	13 / 7.7 \$-4,214 \$-1,106	12 / 7.4 \$-3,205 \$-881	11 / 7.1 \$-1,676 \$-488	Efficiency Level 0% 10% (SEER)		
33 \$-560	06 \$-700	\$1 \$- 597	\$8 \$- 332	6 20%	70	
\$-148	\$-484	\$-440	\$-250	30%	Change in LCC from Baseline Shown by Percentiles of the Distribution of Results (values in 1998\$)	
\$131	\$-330	\$-334	\$-192	40%	Cha ercentiles of	
\$347	\$-216	\$-249	\$-147	50%	Change in LCC from Baseline les of the Distribution of Result	
\$514	\$-115	\$-179	\$-109	60%	from Base oution of Re	
\$659	\$-28	\$-116	\$-77	70%	line esults (valu	
\$817	\$58	\$-59	\$-45	80%	es in 1998\$	
\$1,012	\$145	\$10	\$-10	90%	9	
\$1,947	\$484	\$234	\$100	100%		
\$41	\$-372	\$-365	\$-209	Mean		
35%	73%	89%	92%	with reduced LCC	Percent of Households	

Table 5.378 Summary of LCC Results for Single Package Air Conditioners based on Reverse Engineering **Manufacturing Costs**

	13 \$-6,374 \$-650 \$-269 \$-79	12 \$-4,756 \$-577 \$-329 \$-197	11 \$-2,179 \$-310 \$-172 \$-97	Efficiency Level 0% 10% 20% 30% (SEER)	Change in LCC from Baseline Shown by Percentiles of the Distribution of Results (values in 1998\$)
\$393	\$48	\$-111	\$-49	40%	Char centiles of
\$538	\$129	\$-49	\$-16	50%	Change in LCC from Baseline es of the Distribution of Result
\$658	\$192	\$- 3	\$10	60%	from Base
\$759	\$249	\$37	\$30	70%	line sults (valu
\$867	\$303	\$73	\$50	80%	es in 1998§
\$1,011	\$364	\$109	\$70	90%	3)
\$1,677	\$611	\$226	\$151	100%	
\$276	\$-29	\$-163	\$-78	Mean	
24%	36%	61%	56%	with reduced LCC	Percent of Households

Table 5.38S Summary of LCC Results for Single Package Heat Pumps based on Reverse Engineering Manufacturing Costs

			S	hown by Pe	Cha rcentiles of	nge in LCC f the Distril	Change in LCC from Baseline les of the Distribution of Result	dine esults (valu	Change in LCC from Baseline Shown by Percentiles of the Distribution of Results (values in 1998\$)	9			Percent of Households
Efficiency Level (SEER)	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Mean	with reduced LCC
11 / 7.1	\$-1,190	\$-520	\$-343	\$-253	\$-190	\$-143	\$-102	\$-67	\$-30	\$13	\$185	\$-207	%7%
12 / 7.4	\$-3,373	\$-977	\$-681	\$-514	\$-399	\$-310	\$-233	\$-165	\$-95	\$-16	\$227	\$-421	92%
13 / 7.7	\$-4,405	\$-1,138	\$-712	\$-487	\$-318	\$-194	\$-89	\$9	\$107	\$219	\$613	\$-353	69%
18 / 8.8	\$-8,734	\$-1,689	\$-878	\$-416	\$-92	\$144	\$340	\$525	\$715	\$953	\$2,086	\$-166	44%

Table 5.53S Summary of Payback Period Results for Split Air Conditioners based on Reverse Engineering Manufacturing Costs

ECC - L L					Pay	back Per	iod in Y	ears				
Efficiency Level (SEER)	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Mean
11	1	3	4	5	6	8	10	12	16	24	339	12
12	1	3	5	6	8	10	12	15	20	31	571	15
13	1	4	6	7	9	11	14	17	23	34	670	17
18	1	5	8	11	15	20	27	41	89	1000	>1000	174

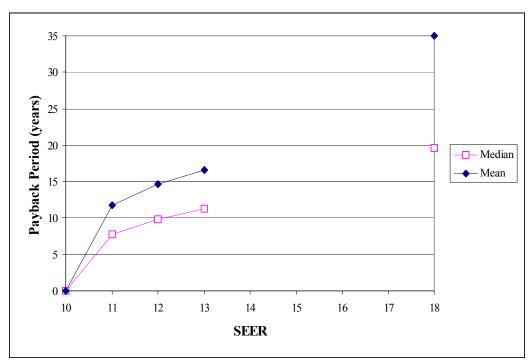


Figure 5.72S Split A/C: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs

Table 5.548 Summary of Payback Period Results for Split Heat Pumps based on Reverse Engineering Manufacturing Costs

Eee				Shown l	·	back Per			Results			
Efficiency Level (SEER / HSPF)	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Mean
11 / 7.1	0	1	2	2	2	3	3	4	5	7	1000	4
12 / 7.4	1	2	2	3	3	4	5	5	7	9	>1000	6
13 / 7.7	1	3	4	5	5	6	7	9	11	15	1000	9
18 / 8.8	2	5	7	9	11	14	17	22	32	62	>1000	78

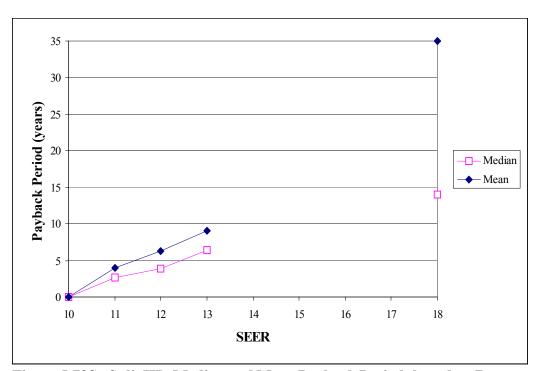


Figure 5.73S Split HP: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs

Table 5.55S Summary of Payback Period Results for Single Package Air Conditioners based on Reverse Engineering Manufacturing Costs

Efficiency				Shown l	·	back Per			f Results			
Level (SEER)	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Mean
11	1	3	4	5	6	8	10	12	16	24	299	11
12	1	3	4	5	6	8	9	12	16	24	591	11
13	1	5	7	9	12	15	18	22	30	46	>1000	22
18	1	6	9	13	18	25	35	57	163	1000	>1000	240

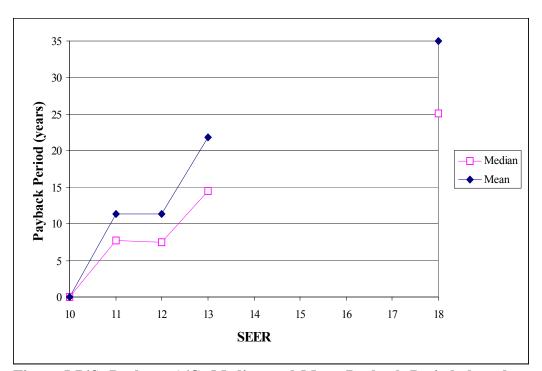


Figure 5.74S Package A/C: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs

Table 5.56S Summary of Payback Period Results for Single Package Heat Pumps based on Reverse Engineering Manufacturing Costs

Efficiency Level				Shown l	·	back Per			f Results			
Efficiency Level (SEER / HSPF)	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Mean
11 / 7.1	1	2	3	3	4	5	5	6	7	11	>1000	7
12 / 7.4	1	2	2	3	3	4	5	6	7	10	1000	6
13 / 7.7	1	4	5	6	7	8	10	12	15	20	>1000	13
18 / 8.8	2	5	7	9	11	13	16	21	28	56	>1000	62

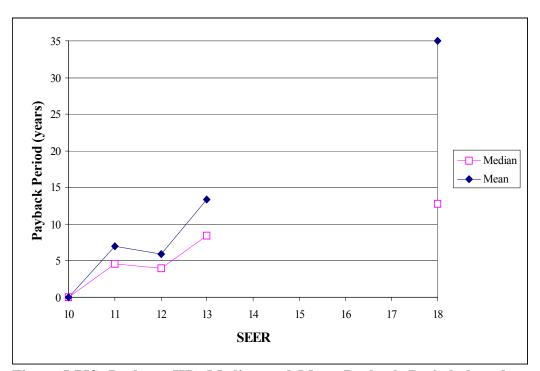


Figure 5.75S Package HP: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs

Table 5.58S Summary of Rebuttable PBPs and Inputs for Split System Air Conditioners based on Reverse Engineering Manufacturing Costs

				8	8			Avg of Units ow Effc'y	
	Installed	Annual	Annual	Annual	Annual	Assumed	Installed	Annual	Rebutt.
Effc'y	Consumer	Energy	Repair	Maint.	Operating	2006	Consumer	Operating	Payback
Level	Cost	Use	Cost	Cost	Expense	Effc'y	Cost	Expense	Period
SEER	1998\$	kWh/yr	1998\$	1998\$	1998\$	Distr.	1998\$	1998\$	years
10	\$2,236	3,600	\$26	\$36	\$357	78.7%	-	-	-
11	\$2,327	3,273	\$26	\$36	\$331	5.4%	\$2,236	\$357	3.5
12	\$2,449	3,000	\$27	\$36	\$310	12.0%	\$2,241	\$355	4.5
13	\$2,571	2,769	\$27	\$36	\$292	3.6%	\$2,267	\$350	5.2
18	\$2,990	2,000	\$46	\$36	\$250	0.2%	\$2,279	\$347	7.3

Table 5.59S Summary of Rebuttable PBPs and Inputs for Split System Heat Pumps based on Reverse Engineering Manufacturing Costs

						V	Units So	Weighted-Avg of Units Sold below Effc'y	
T-00 A	Installed	Annual	Annual	Annual	Annual	Assumed	Installed	Annual	Rebutt.
Effc'y	Consumer	Energy	Repair	Maint.	Operating	2006	Consumer	Operating	Payback
Level	Cost	Use	Cost	Cost	Expense	Effc'y	Cost	Expense	Period
SEER/HSPF	1998\$	kWh/yr	1998\$	1998\$	1998\$	Distr.	1998\$	1998\$	years
10 /6.8	\$3,668	11,844	\$38	\$36	\$894	59.3%	-	-	-
11 / 7.1	\$3,723	11,168	\$38	\$36	\$850	15.0%	\$3,668	\$894	1.3
12 / 7.4	\$3,812	10,575	\$38	\$36	\$812	19.7%	\$3,679	\$885	1.8
13 / 7.7	\$4,000	10,049	\$39	\$36	\$778	4.5%	\$3,707	\$870	3.2
18 / 8.8	\$4,707	8,370	\$66	\$36	\$697	0.5%	\$3,734	\$864	5.8

Table 5.60S Summary of Rebuttable PBPs and Inputs for Single Package Air Conditioners based on Reverse Engineering Manufacturing Costs

							Weighted-Avg of Units Sold below Effc'y		
Effc'y Level	Installed Consumer Cost	Annual Energy Use	Annual Repair Cost	Annual Maint. Cost	Annual Operating Expense	Assumed 2006 Effc'y	Installed Consumer Cost	Annual Operating Expense	Rebutt. Payback Period
SEER	1998\$	kWh/yr	1998\$	1998\$	1998\$	Distr.	1998\$	1998\$	years
10	\$2,607	3,600	\$34	\$36	\$365	82.3%	-	-	-
11	\$2,696	3,273	\$34	\$36	\$339	9.7%	\$2,607	\$365	3.5
12	\$2,765	3,000	\$34	\$36	\$318	6.8%	\$2,616	\$362	3.3
13	\$3,032	2,769	\$35	\$36	\$300	1.2%	\$2,627	\$359	6.8
18	\$3,466	2,000	\$57	\$36	\$261	0.0%	\$2,632	\$358	8.6

Table 5.61S Summary of Rebuttable PBPs and Inputs for Single Package Heat Pumps based on Reverse Engineering Manufacturing Costs

							Weighted-Avg of Units Sold below Effc'y		
	Installed	Annual	Annual	Annual	Annual	Assumed	Installed	Annual	Rebutt.
Effc'y	Consumer	Energy	Repair	Maint.	Operating	2006	Consumer	Operating	Payback
Level	Cost	Use	Cost	Cost	Expense	Effc'y	Cost	Expense	Period
SEER/HSPF	1998\$	kWh/yr	1998\$	1998\$	1998\$	Distr.	1998\$	1998\$	years
10 / 6.8	\$3,599	11,844	\$39	\$36	\$895	64.2%	-	-	-
11 / 7.1	\$3,691	11,168	\$39	\$36	\$852	13.6%	\$3,599	\$895	2.1
12 / 7.4	\$3,748	10,575	\$40	\$36	\$814	22.2%	\$3,615	\$888	1.8
13 / 7.7	\$4,034	10,049	\$40	\$36	\$780	0.0%	\$3,645	\$871	4.3
18 / 8.8	\$4,584	8,370	\$66	\$36	\$696	0.0%	\$3,645	\$871	5.4

J.2 SUPPLEMENTAL TABLES AND FIGURES TO CHAPTER 7

Table 7.11S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and *AEO2000* Reference Case (2006 - 2030)

		Efficiency Scenario	
	NAECA	Roll-up	Shift
Trial Standard Level	Quads	Quads	Quads
1	1.7	1.5	1.9
2	3.0	2.9	3.5
3	3.5	3.4	3.9
4	4.3	4.2	4.7
5	8.6	8.8	8.6

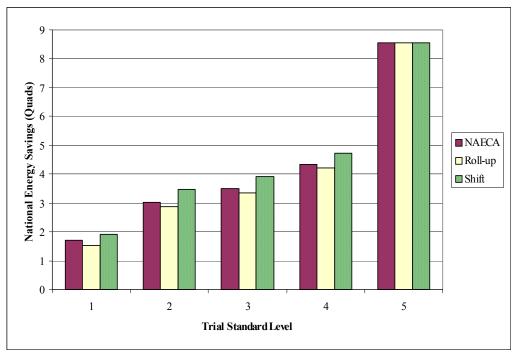


Figure 7.2S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and AEO2000 Reference Case (2006-2030)

Table 7.12S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and *AEO2000* Low Growth Case (2006 - 2030)

		Efficiency Scenario	
	NAECA	Roll-up	Shift
Trial Standard Level	Quads	Quads	Quads
1	1.7	1.5	1.9
2	2.9	2.8	3.4
3	3.4	3.3	3.8
4	4.3	4.1	4.7
5	8.4	8.4	8.4

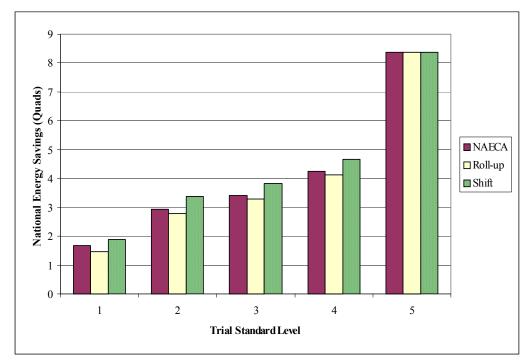


Figure 7.3S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and AEO2000 Low Growth Case (2006-2030)

Table 7.13S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and *AEO2000* High Growth Case (2006 - 2030)

	Efficiency Scenario					
	NAECA	Roll-up	Shift			
Trial Standard Level	Quads	Quads	Quads			
1	1.8	1.6	2.0			
2	3.2	3.0	3.6			
3	3.7	3.5	4.1			
4	4.6	4.4	5.0			
5	9.0	9.0	9.0			

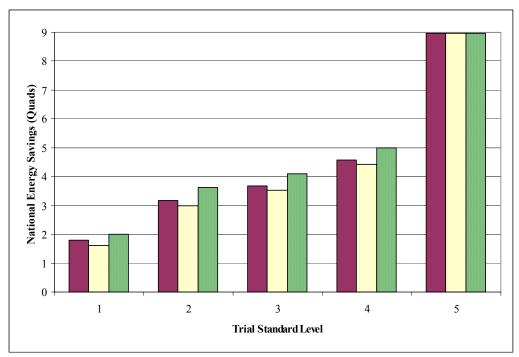


Figure 7.4S Cumulative NES Results based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006-2030)

Table 7.14S Cumulative NPV Results based on Reverse Engineering Manufacturing Costs and AEO2000 Reference Case (2006 - 2030)

	Base	Efficiency Scenario									
	Case		NAECA			Roll-up			Shift		
	Total	Total NPV		Total	NPV		Total	NI	PV		
TSL	billion 98\$	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total	
1	\$379	\$378	\$2	0.4%	\$377	\$2	0.5%	\$378	\$1	0.4%	
2	\$379	\$377	\$2	0.5%	\$377	\$3	0.7%	\$380	(\$1)	-0.2%	
3	\$379	\$378	\$1	0.4%	\$377	\$2	0.6%	\$381	(\$2)	-0.5%	
4	\$379	\$379	\$0	0.0%	\$378	\$1	0.3%	\$383	(\$4)	-0.9%	
5	\$379	\$390	(\$10)	-2.7%	\$390	(\$10)	-2.7%	\$390	(\$10)	-2.7%	

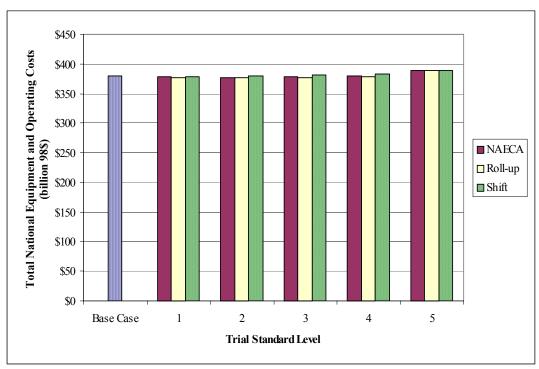


Figure 7.10S Cumulative Total National Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs and AEO2000 Reference Case (2006 - 2030)

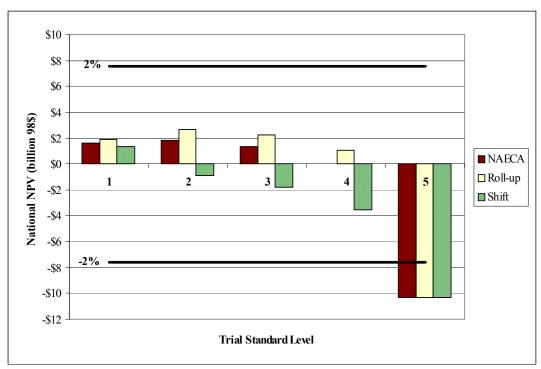


Figure 7.11S Cumulative NPVs relative to ±2% of Total National Base Case Costs based on Reverse Engineering Manufacturing Costs and *AEO2000* Reference Case (2006 - 2030)

Table 7.158 Cumulative NPV Results based on Reverse Engineering Manufacturing Costs and AEO2000 Low Growth Case (2006 -2030)

	Base		Efficiency Scenario									
	Case		NAECA			Roll-up			Shift			
	Total	Total NPV		Total	NPV		Total	NI	PV			
TSL	billion 98\$	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total		
1	\$367	\$366	\$1	0.4%	\$365	\$2	0.5%	\$366	\$1	0.3%		
2	\$367	\$366	\$1	0.4%	\$365	\$2	0.6%	\$368	(\$1)	-0.3%		
3	\$367	\$366	\$1	0.3%	\$365	\$2	0.5%	\$369	(\$2)	-0.5%		
4	\$367	\$367	\$0	-0.1%	\$366	\$1	0.2%	\$371	(\$4)	-1.0%		
5	\$367	\$378	(\$11)	-2.9%	\$378	(\$11)	-2.9%	\$378	(\$11)	-2.9%		

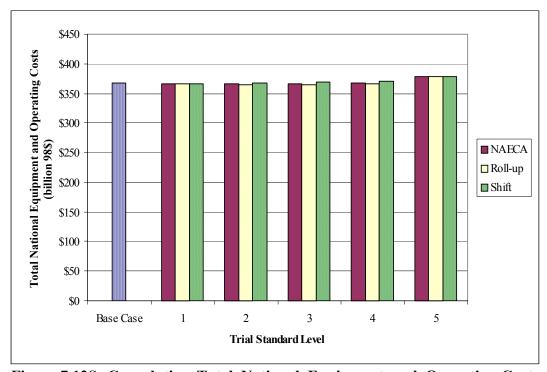


Figure 7.12S Cumulative Total National Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs and AEO2000 Low Growth Case (2006 - 2030)



Figure 7.13S Cumulative National NPVs relative to ±2% of Total National Base Case Costs based on Reverse Engineering Manufacturing Costs and *AEO2000* Low Growth Case (2006 - 2030)

Table 7.16S Cumulative NPV Results based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 -2030)

	Base	Efficiency Scenario									
	Case		NAECA			Roll-up			Shift		
	Total	Total NPV		Total	NPV		Total	NI	PV		
TSL	billion 98\$	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total	billion 98\$	billion 98\$	as % of Base Case Total	
1	\$402	\$400	\$2	0.5%	\$400	\$2	0.6%	\$400	\$2	0.4%	
2	\$402	\$400	\$2	0.6%	\$399	\$3	0.8%	\$402	\$0	-0.1%	
3	\$402	\$400	\$2	0.5%	\$399	\$3	0.7%	\$403	(\$1)	-0.3%	
4	\$402	\$401	\$1	0.1%	\$400	\$2	0.4%	\$405	(\$3)	-0.8%	
5	\$402	\$412	(\$10)	-2.4%	\$412	(\$10)	-2.4%	\$412	(\$10)	-2.4%	

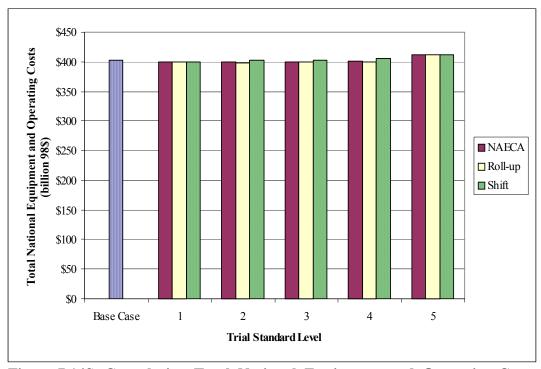


Figure 7.14S Cumulative Total National Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 - 2030)

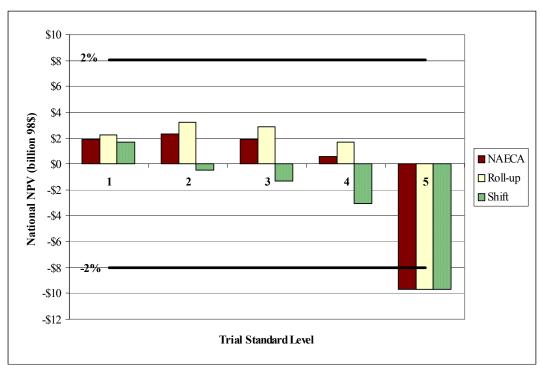


Figure 7.15S Cumulative National NPVs relative to $\pm 2\%$ of Total National Base Case Costs based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 - 2030)

Table 7.19S Cumulative NPV Results based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario (2006 - 2030): 3% Discount Rate Scenario

	Base Case Total	TSL Total	TS	L NPV
TSL	billion 98\$	billion 98\$	billion 98\$	as % of Base Case Total
1	\$708	\$702	\$6	0.9%
2	\$708	\$698	\$10	1.4%
3	\$708	\$698	\$10	1.4%
4	\$708	\$699	\$9	1.2%
5	\$708	\$716	(\$8)	-1.2%

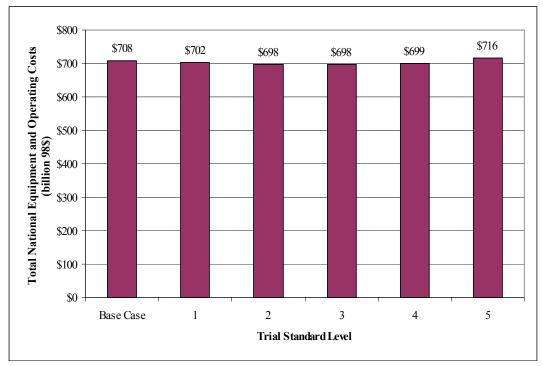


Figure 7.26S Cumulative Total National Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario, and 3% Discount Rate Scenario (2006 - 2030)

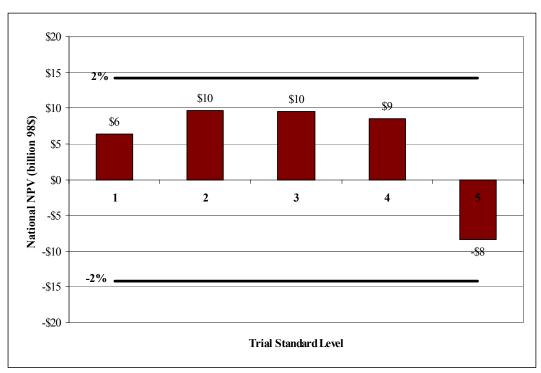


Figure 7.27S Cumulative National NPVs based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario, and 3% Discount Rate Scenario (2006 - 2030)

Table 7.19A Cumulative NPV Results based on Reverse Engineering Manufacturing Costs, Roll-up Efficiency Scenario (2006 - 2030): 3% Discount Rate Scenario

	Base Case Total	TSL Total	TS	L NPV
TSL	billion 98\$	billion 98\$	billion 98\$	as % of Base Case Total
1	\$708	\$701	\$7	0.9%
2	\$708	\$697	\$11	1.6%
3	\$708	\$697	\$11	1.6%
4	\$708	\$697	\$11	1.5%
5	\$708	\$716	(\$8)	-1.2%

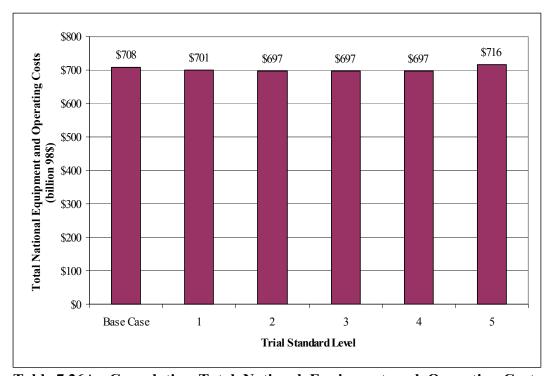


Table 7.26A Cumulative Total National Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs, Roll-up Efficiency Scenario, and 3% Discount Rate Scenario (2006 - 2030)

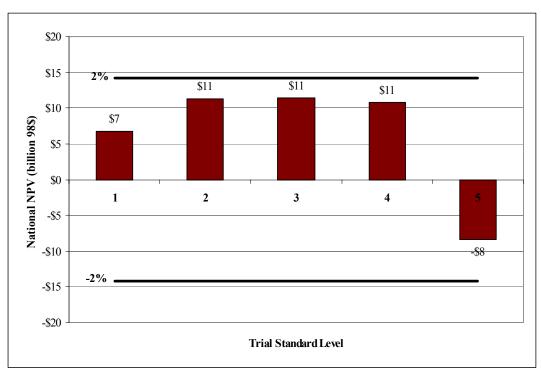


Table 7.27A Cumulative National NPVs based on Reverse Engineering Manufacturing Costs, Roll-up Efficiency Scenario, and 3% Discount Rate Scenario (2006 - 2030)

J.3 SUPPLEMENTAL TABLES TO CHAPTER 8

Table 8.14S Changes in Industry Net Present Value — Reverse Engineering Relative Cost, NAECA Efficiency Mix

Standard	Industry Net Present Value			Change in INPV from Base Case			
Level				§ million	percent		
Base	\$	1,539					
1	\$	1,509	\$	(30)	-2%		
2	\$	1,380	\$	(159)	-10%		
3	\$	1,368	\$	(171)	-11%		
4	\$	1,370	\$	(169)	-11%		

Table 8.15S Changes in Industry Net Present Value — Reverse Engineering Relative Cost, Roll-up Efficiency Mix

Standard	Industry Net Present Value			Change in INPV from Base Case				
Level		(\$ million)	\$ million perce		percent			
Base	\$	1,539						
1	\$	1,379	\$	(160)	-10%			
2	\$	1,226	\$	(313)	-20%			
3	\$	1,220	\$	(319)	-21%			
4	\$	1,236	\$	(303)	-20%			

Table 8.16S Changes in Industry Net Present Value — Reverse Engineering Relative Cost, Shift Efficiency Mix

Standard	Industry Net Present Value			Change in INPV from Base Case				
Level		(\$ million)	\$	percent				
Base	\$	1,539						
1	\$	1,658	\$	119	8%			
2	\$	1,772	\$	233	15%			
3	\$	1,776	\$	237	15%			
4	\$	1,824	\$	285	19%			

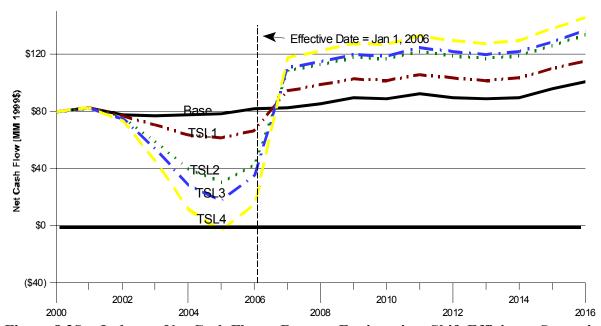


Figure 8.3S Industry Net Cash Flow – Reverse Engineering, Shift Efficiency Scenario

Figure 8.4S Industry Net Cash Flow – Reverse Engineering, NAECA Efficiency Scenario

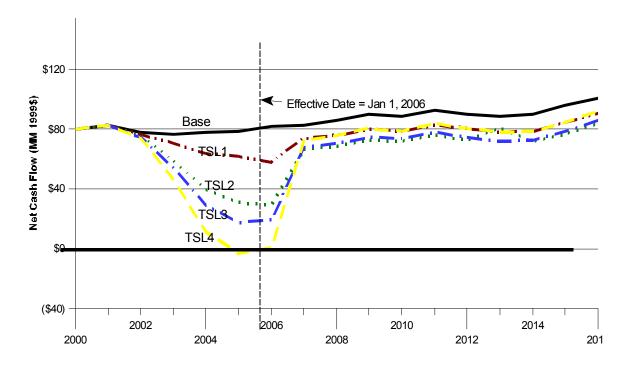


Figure 8.5S Industry Net Cash Flow – Reverse Engineering, Roll-up Efficiency Scenario

Table 8.29S Changes in Industry Net Present Value — Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, NAECA Efficiency Scenario

Standard	ndustry Net resent Value	Change in INPV from Base Case				
Level	(\$ million)	\$ million	percent 			
Base	\$ 368					
1	\$ 385	\$ 17	5%			
2	\$ 393	\$ 25	7%			
3	\$ 397	\$ 29	8%			
4	\$ 412	\$ 44	12%			

Table 8.30S Changes in Industry Net Present Value — Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, Roll-up Efficiency Mix

Standard	ndustry Net resent Value	Change in INPV from Base Case				
Level	(\$ million)	\$	percent			
Base	\$ 368					
1	\$ 378	\$	10	3%		
2	\$ 385	\$	17	5%		
3	\$ 390	\$	22	6%		
4	\$ 405	\$	37	10%		

Table 8.31S Changes in Industry Net Present Value — Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, Shift Efficiency Mix

Standard		ndustry Net		Change in INPV from Base Case				
Level	((\$ million)	\$ million percent					
Base	\$	368						
1	\$	391	\$	23	6%			
2	\$	414	\$	46	13%			
3	\$	419	\$	51	14%			
4	\$	437	\$	69	19%			

Table 8.32S Changes in Industry Net Present Value — Higher Operating Cost Subgroup, Reverse Engineering Relative Cost, NAECA Efficiency Scenario

Standard	Industry Net Present Value			Change in INPV from Base Case				
Level		(\$ million)	:	percent				
Base	\$	1,171						
1	\$	1,124	\$	(47)	-4%			
2	\$	987	\$	(184)	-16%			
3	\$	971	\$	(200)	-17%			
4	\$	958	\$	(213)	-18%			

Table 8.33S Changes in Industry Net Present Value — Higher Operating Cost Subgroup, Reverse Engineering Relative Cost, Roll-up Efficiency Mix

Standard	Industry Net Present Value			Change in INPV from Base Case				
Level		(\$ million)	\$ million perce		percent			
Base	\$	1,171						
1	\$	1,000	\$	(171)	-15%			
2	\$	841	\$	(330)	-28%			
3	\$	830	\$	(341)	-29%			
4	\$	831	\$	(340)	-29%			

Table 8.34S Changes in Industry Net Present Value — Higher Operating Cost Subgroup,

Reverse Engineering Relative Cost, Shift Efficiency Mix

Standard	Industry Net Present Value			Change in INPV from Base Case				
Level		(\$ million)	\$ million percen					
Base	\$	1,171						
1	\$	1,267	\$	96	8%			
2	\$	1,358	\$	187	16%			
3	\$	1,357	\$	186	16%			
4	\$	1,387	\$	216	18%			

Table 8.358 Changes in ROIC in 2011 — Lower Operating Cost Subgroup

	Reverse Ei NAF	0		ngineering II-up	Reverse Engineering Shift		
Standard Level	Return on Invested Capital (ROIC)	Change in ROIC from Base	Return on Invested Capital (ROIC)	Change in ROIC from Base	Return on Invested Capital (ROIC)	Change in ROIC from Base	
Base	13.2%		13.2%		13.2%		
1	13.6%	3%	13.5%	2%	13.9%	5%	
2	13.4%	2%	13.2%	0%	14.1%	7%	
3	13.5%	2%	13.2%	0%	14.1%	7%	
4	13.6%	3%	13.4%	2%	14.3%	8%	

Table 8.36S Changes in ROIC in 2011 — Higher Operating Cost Subgroup

	Reverse E	0		ngineering ll-up	Reverse Engineering Shift		
Standard Level	Return on Invested Capital (ROIC)	Change in ROIC from Base	Return on Invested Capital (ROIC)	Change in ROIC from Base	Return on Invested Capital (ROIC)	Change in ROIC from Base	
Base	13.0%		13.0%		13.0%		
1	12.2%	-6%	10.7%	-18%	14.0%	8%	
2	10.2%	-22%	8.5%	-35%	14.4%	11%	
3	10.0%	-23%	8.4%	-35%	14.2%	9%	
4	9.7%	-25%	8.4%	-35%	14.1%	8%	

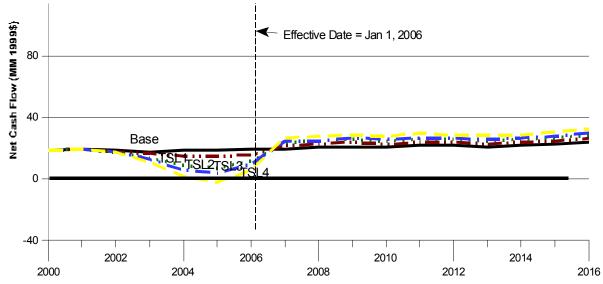


Figure 8.9S Net Cash Flows for the Lower Operating Cost Subgroup – Reverse Engineering, NAECA Efficiency Scenario

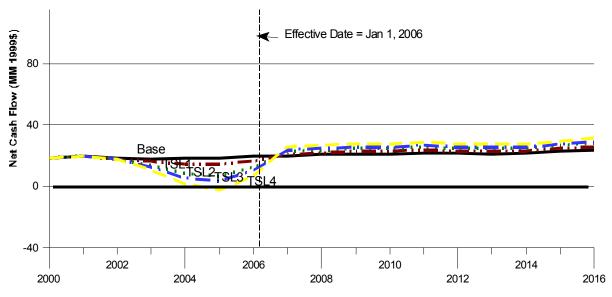


Figure 8.10S Net Cash Flows for the Lower Operating Cost Subgroup – Reverse Engineering, Roll-up Efficiency Scenario

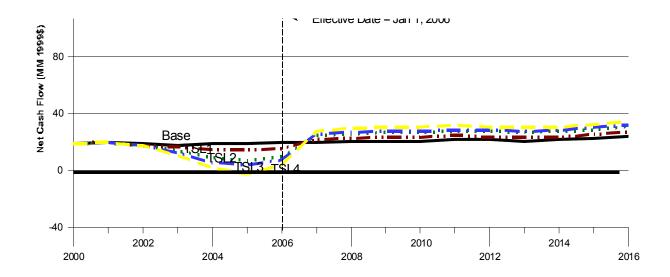


Figure 8.11S Net Cash Flows for the Lower Operating Cost Subgroup – Reverse Engineering, Shift Efficiency Scenario

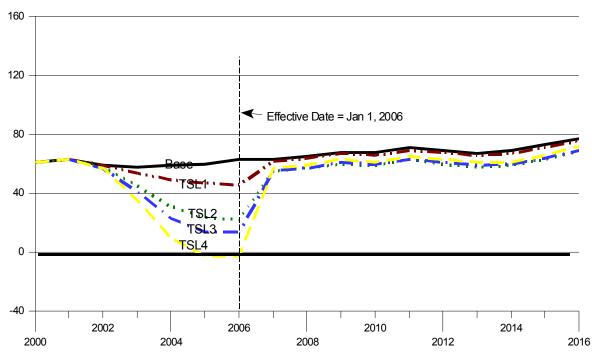


Figure 8.12S Net Cash Flows for the Higher Operating Cost Subgroup – Reverse Engineering, NAECA Efficiency Scenario

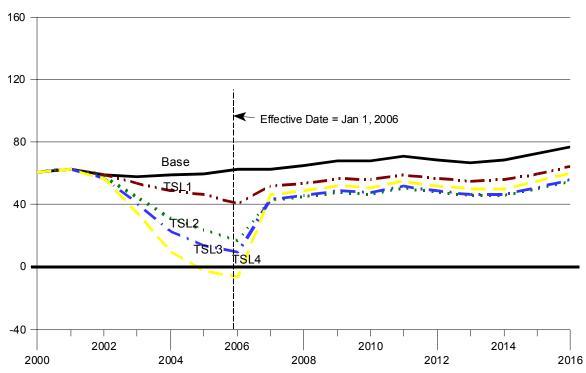


Figure 8.13S Net Cash Flows for the Higher Operating Cost Subgroup – Reverse Engineering, Roll-up Efficiency Scenario

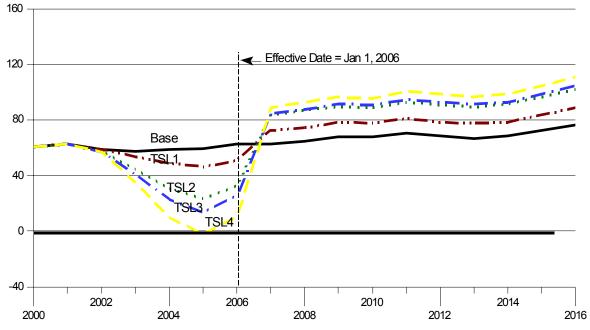


Figure 8.14S Net Cash Flows for the Higher Operating Cost Subgroup – Reverse Engineering, Shift Efficiency Scenario

J.4 SUPPLEMENTAL TABLES TO CHAPTER 10

Table 10.3S Split A/C: LCC Result Comparisons between Low-Income Households and Overall Sample based on Reverse Engineering Manufacturing Costs

		Low-Income Households				All Households and Commercial Buildings				
Efficiency SEER	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)
10	\$4,906	-	-	=	-	\$5,170	=	-	-	-
11	\$4,855	(\$51)	21%	74%	5%	\$5,095	(\$75)	28%	70%	2%
12	\$4,841	(\$65)	28%	38%	34%	\$5,057	(\$113)	35%	40%	25%
13	\$4,863	(\$43)	26%	24%	50%	\$5,057	(\$113)	34%	27%	39%
18	\$5,176	\$270	17%	6%	77%	\$5,307	\$137	25%	7%	68%

Table 10.4S Split Heat Pump: LCC Result Comparisons between Low-Income Households and Overall Sample based on Reverse Engineering Manufacturing Costs

	Low-Income Households					All Households and Commercial Buildings						
Efficiency SEER	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)		
10	\$8,965	-	-	-	-	\$9,679	-	-	-	-		
11	\$8,836	(\$129)	26%	74%	0%	\$9,470	(\$209)	40%	60%	0%		
12	\$8,742	(\$223)	44%	56%	0%	\$9,314	(\$365)	58%	42%	0%		
13	\$8,780	(\$185)	39%	49%	12%	\$9,307	(\$372)	52%	42%	6%		
18	\$9,389	\$424	15%	10%	75%	\$9,720	\$41	28%	15%	57%		

Table 10.58 Package A/C: LCC Result Comparisons between Low-Income Households and Overall Sample based on Reverse Engineering Manufacturing Costs

	Low-Income Households					All Households and Commercial Buildings				
Efficiency SEER	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)
10	\$5,327	-	-	-	-	\$5,629	-	-	-	-
11	\$5,272	(\$55)	21%	77%	2%	\$5,551	(\$78)	27%	72%	1%
12	\$5,202	(\$125)	34%	52%	14%	\$5,466	(\$163)	40%	51%	9%
13	\$5,364	\$37	21%	18%	61%	\$5,600	(\$29)	28%	20%	52%
18	\$5,704	\$377	15%	5%	80%	\$5,905	\$276	21%	6%	73%

Table 10.68 Package Heat Pump: LCC Result Comparisons between Low-Income Households and Overall Sample based on Reverse Engineering Manufacturing Costs

		Low-In	come Hou	seholds		All H	ouseholds a	and Comm	nercial Bui	ldings
Efficiency SEER	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)	Average LCC	Avg LCC (Savings) Costs	Net Savings (>2%)	No Signif. Impact	Net Costs (>2%)
10	\$9,149	-	=	=	-	\$9,626	-	=	-	-
11	\$9,031	(\$118)	24%	76%	0%	\$9,419	(\$207)	39%	61%	0%
12	\$8,884	(\$265)	52%	48%	0%	\$9,205	(\$421)	66%	34%	0%
13	\$9,001	(\$148)	36%	44%	20%	\$9,273	(\$353)	50%	38%	12%
18	\$9,433	\$284	20%	14%	66%	\$9,460	(\$166)	37%	15%	48%

J.5 SUPPLEMENTAL TABLES TO CHAPTER 11

Table 11.2S Standard Level 1 Forecast based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario

NEMS-BRS Results:	ults:	Difference from A	AEO2000 Reference	00 R	efer	ence	עא		
							Ţ.	Extrapolation	ation
	2000 2005 2010 2015 2020		2000 20	2005 2010		2015 2	2020 2025	2025	2030
Residential Sector Energy Consumption	y Consumption	Residential Sector Energy	y Consumption	tion					
Electricity Sales (TWh)	1,185 1,281 1,375 1,454 1,539	Electricity Sales (TWh)	0.0		-4.3	-9.8	-14.4	-17.5	-19.5
 Total U.S. Electric Generation	ation	Total U.S. Electric General	ation						
Coal (TWh)	1,930 2,127 2,171 2,249 2,341	Coal (TWh)						-6.1	-6.1
Gas (TWh)	601 717 998 1,289 1,467	7 Gas (TWh)						-9.1	-9.1
Petroleum(TWh)	90 68 53 47 45	Petroleum(TWh)	0.0	0.0	-0.5	0.2	0.9	0.9	0.9
Nuclear (TWh)	688 674 627 511 427							0.0	0.0
Renewables (TWh)	389 411 429 437 447	Renewables (TWh)						0.0	0.0
Total (TWh)	3,698 3,997 4,278 4,533 4,727	7 Total (TWh)						-14.3	-14.3
Installed Generating Capacity	acity	Installed Generating Capa	acity						
Coal (GW)	315.3 310.6 310.7 315.6 325.2				0.0	-0.2	-0.8	-0.8	-0.8
Other Fossil (GW)	274.8 334.0 404.2 458.0 501.9	Other Fossil (GW)			-0.5	-3.8	-5.7	-5.7	-5.7
Nuclear (GW)	97.5 93.4 84.1 67.4 57.0	Nuclear (GW)			0.0	0.0	0.0	0.0	0.0
Renewables (GW)	94.7 98.5 101.7 103.8 105		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 900.6 944.8 989.8	3 Total (GW)			-0.6	-4.0	-6.5	-6.5	-6.5

Table 11.3S Standard Level 2 Forecast based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Reference	00	Refe	renc	•		
									Extrapolation	lation
	2000 2005 2010 2015	2020		2000 2005 2010	005 2		2015	2020	2025	2030
Residential Sector Energy Consumption	y Consumption		Residential Sector Energy	v Consumption	otion					
Electricity Sales (TWh)	1,371 1,447	1,527	Electricity Sales (TWh)	0.0	0.0	-7.6	-17.3	-25.6	-31.0	-34.6
 Total U.S. Electric Generation	ation		Total U.S. Electric Genera	 ation						
Coal (TWh)	1,930 2,127 2,169 2,247	2,337	Coal (TWh)	0.0	0.0	-2.6	-4.2	-10.3	-10.3	-10.3
Gas (TWh)		1,460	Gas (TWh)	0.0	0.0	-4.4	-13.9	-15.7	-15.7	-15.7
Petroleum(TWh)	90 68 53 47	45	Petroleum(TWh)	0.0	0.0	-1.0	0.2	1.3	1.3	1.3
Nuclear (TWh)	688 674 627 511	427	Nuclear (TWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 411 429 437	447	Renewables (TWh)	0.0	0.0	0.0	0.2	-0:1	-0.1	-0.1
Total (TWh)	3,698 3,997 4,275 4,525	4,716	Total (TWh)	0.0	0.0	-7.9	-17.7	-24.8	-24.8	-24.8
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal (GW)	5.3 310.6 310.7 315.4	324.7	Coal (GW)	0.0	0.0	0.0	-0.4	-1.3	-1.3	-1.3
Other Fossil (GW)	455.5	498.3	Other Fossil (GW)	0.0	0.0	-0.9	-6.3	-9.3	-9.3	-9.3
Nuclear (GW)	67.4	57.0	Nuclear (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (GW)	103.8	105.7	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 900.3 942.2	985.7	Total (GW)	0.0	0.0	-0.9	-6.6	-10.6	-10.6	-10.6

Table 11.4S Standard Level 3 Forecast based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Reference	00	Refe	renc	e		
									Extrapolation	lation
	2000 2005 2010 2015	2020		2000 2005 2010 2015	005 2	010	2015	2020	2025 2030	2030
Residential Sector Energy Consumption	y Consumption		Residential Sector Energy	Consumption	otion					
Electricity Sales (TWh)	1,185 1,281 1,370 1,444 1,523	1,523	Electricity Sales (TWh)	0.0		-8.8	-20.1	-29.7	-36.1	-40.3
 Total U.S. Electric Generation	ation		Total U.S. Electric Genera	tion						
Coal (TWh)	1,930 2,127 2,169 2,246	2,335	Coal (TWh)	0.0	0.0	-3.0	4.9	-12.0	-12.0	-12.0
Gas (TWh)	601 717 996 1,281	1,458	Gas (TWh)	0.0	0.0	-5.1	-16.1	-18.2	-18.2	-18.2
Petroleum(TWh)	90 68 53 47	45	Petroleum(TWh)	0.0	0.0	-1.2	0.3	1.5	1.5	1.5
Nuclear (TWh)	688 674 627 511	427	Nuclear (TWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 411 429 437	447	Renewables (TWh)	0.0	0.0	0.0	0.2	- 0:1	-0.1	-0.1
Total (TWh)	3,698 3,997 4,274 4,522	4,712	Total (TWh)	0.0	0.0	-9.2	-20.6	-28.8	-28.8	-28.8
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal (GW)	315.3 310.6 310.7 315.4	324.5	Coal (GW)	0.0	0.0	0.0	-0.4	-1.5	-1.5	-1.5
Other Fossil (GW)	274.8 334.0 403.7 454.5	496.8	Other Fossil (GW)	0.0	0.0	-1.0	-7.3	-10.8	-10.8	-10.8
Nuclear (GW)	97.5 93.4 84.1 67.4	57.0	Nuclear (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (GW)	103.8	105.7	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 900.1 941.1	983.9	Total (GW)	0.0	0.0	-1.1	-7.7	-12.4	-12.4	-12.4

Table 11.5S Standard Level 4 Forecast based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Reference	00 F	\efe ₁	renc	e		
								_	Extrapolation	ation
	2000 2005 2010 2015	2020		2000 2005	005 20	2010 2	2015	2020	2020 2025 2030	2030
Residential Sector Energy Consumption	Consumption		Residential Sector Energy	Consumption	otion					
Electricity Sales (TWh)	1,185 1,281 1,368 1,439 1,516	1,516	Electricity Sales (TWh)	0.0	0.0 -	-10.9	-24.9	-36.9	-44.9	-50.2
Total U.S. Electric Generation	ation		Total U.S. Electric Genera	ation						
Coal (TWh)	1,930 2,127 2,171 2,245	2,332	Coal (TWh)	0.0				-14.7	-14.7	-14.7
Gas (TWh)	992 1,277	1,454	Gas (TWh)	0.0				-22.5	-22.5	-22.5
Petroleum(TWh)	47	46	Petroleum(TWh)	0.0	0.0	-1.0	0.5	2.0	2.0	2.0
Nuclear (TWh)	688 674 627 511	427	Nuclear (TWh)	0.0				0.0	0.0	0.0
Renewables (TWh)	389 411 429 437	447	Renewables (TWh)	0.0				0.0	0.0	0.0
Total (TWh)	3,698 3,997 4,272 4,518	4,706	Total (TWh)	0.0				-35.2	-35.2	-35.2
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal (GW)	5.3 310.6 310.7 315.3	324.1	Coal (GW)	0.0	0.0	0.0		-1.9	-1.9	-1.9
Other Fossil (GW)		494.0	Other Fossil (GW)	0.0	0.0	-1.3		-13.6	-13.6	-13.6
Nuclear (GW)	67.4	57.0	Nuclear (GW)	0.0	0.0	0.0		0.0	0.0	0.0
Renewables (GW)		105.7	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 899.8 939.0	980.8	Total (GW)	0.0	0.0	-1.4		-15.5	-15.5	-15.5

Figure 11.6S Standard Level 5 Forecast based on Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Reference	00 R	efer	ence			
								ш	Extrapolation	ation
	2000 2005 2010 2015	2020		2000 2005 2010)05 20		2015 2	020	2020 2025 2030	2030
Residential Sector Energy Consumption	y Consumption		Residential Sector Energy	_ ,	rtion					
Electricity Sales (TWh)	1,358 1,416	1,480	Electricity Sales (TWh)	0.0	0.0 -20.6		48.0 -	-72.7	-89.7 -100.8	100.8
Total U.S. Electric Generation	ation		Total U.S. Electric Genera	ation						
Coal (TWh)	1,930 2,127 2,169 2,240	2,320	Coal (TWh)	0.0						-26.7
Gas (TWh)	601 717 986 1,261	1,437	Gas (TWh)	0.0						-38.6
Petroleum(TWh)	90 68 52 47	42	Petroleum(TWh)	0.0	0.0 -	-1.8	0.4	-2.2	-2.2	-2.2
Nuclear (TWh)	688 674 627 511	427	Nuclear (TWh)	0.0						0.0
Renewables (TWh)	389 411 429 437	448	Renewables (TWh)	0.0						0.5
Total (TWh)	3,698 3,997 4,263 4,496	4,674	Total(TWh)	0.0						-67.0
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal(GW)	315.3 310.6 310.6 314.8	322.4	Coal (GW)	0.0					-3.6	-3.6
Other Fossil (GW)	274.8 334.0 402.4 445.0	482.4	Other Fossil (GW)						-25.2	-25.2
Nuclear (GW)	97.5 93.4 84.1 67.4	57.0	Nuclear (GW)						0.0	0.0
Renewables (GW)	94.7 98.5 101.7 103.8	105.6	Renewables (GW)	0.0	0.0	0.0	0.0	-0:1	-0.1	-0.1
Total (GW)	782.3 836.5 898.8 931.0	967.5	Total (GW)						-28.8	-28.8

Table 11.7S Standard Level 4 Roll-up Forecast based on Reverse Engineering Manufacturing Costs

NEMS-BRS Results:	ults:	Difference from	AEO2000 Reference	00 R	efer	ence			
							Ħ	Extrapolation	ation
	2000 2005 2010 2015 2	2020	2000 2005 2010	05 20		2015 2	2020	2025	2030
Residential Sector Energy Consumption	y Consumption	Residential Sector Energ	7	tion					
Electricity Sales (TWh)	1,185 1,281 1,368 1,440 1,517		0.0	0.0 -10.6		-24.2 -	-35.8	-43.6	-48.7
Total U.S. Electric Generation	ation —	Total U.S. Electric Generation	 ration						
Coal (TWh)	1,930 2,127 2,170 2,245 2	2,332 Coal (TWh)	0.0					-14.9	-14.9
Gas (TWh)	-	1,454 Gas (TWh)	0.0					-22.1	-22.1
Petroleum(TWh)	47		0.0	0.0 -1	-1.2	0.2	2.0	2.0	2.0
Nuclear (TWh)	688 674 627 511	427 Nuclear (TWh)	0.0					0.0	0.0
Renewables (TWh)	389 411 429 437	447 Renewables (TWh)	0.0					0.0	0.0
Total (TWh)	3,698 3,997 4,272 4,518 4	4,706 Total (TWh)	0.0					-34.9	-34.9
Installed Generating Capacity	acity	Installed Generating Cap	pacity						
Coal (GW)	5.3 310.6 310.7 315.3	324.1 Coal (GW)						-1.9	-1.9
Other Fossil (GW)	274.8 334.0 403.4 452.7 4	494.1 Other Fossil (GW)	0.0					-13.5	-13.5
Nuclear (GW)	67.4	57.0 Nuclear (GW)	0.0					0.0	0.0
Renewables (GW)	94.7 98.5 101.7 103.8 1		0.0	0.0 (0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 899.8 939.2 9	980.8 Total (GW)	0.0		ľ			-15.5	-15.5

Table 11.8S Standard Level 4 Shift Forecast based on Reverse Engineering Manufacturing Costs

		(q		0			
NEMS-BRS Results:	ults:	Difference from A	AEO2000 Reference	0 Ref	erence			
						Ex	Extrapolation	ion
	2000 2005 2010 2015 2020		2000 2005 2010	5 2010	2015	2020 2025 2030	025 20	130
Residential Sector Energy Consumption	$y_{.}$ Consumption	Residential Sector Energy	Consumption	on				
Electricity Sales (TWh)	1,185 1,281 1,367 1,437 1,513	Electricity Sales (TWh)	0.0 0.0	0 -11.8	-27.1	-40.2	-49.1 -54.9	54.9
Total U.S. Electric Generation	ation	Total U.S. Electric Generat	ation					
Coal (TWh)	1,930 2,127 2,169 2,245 2,331	1 Coal (TWh)						16.0
Gas (TWh)	601 717 993 1,276 1,452	2 Gas (TWh)						23.8
Petroleum(TWh)	90 68 53 47							2.0
Nuclear (TWh)	688 674 627 511 427	7 Nuclear (TWh)	0.0 0	0.0 0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 411 429 437 447	7 Renewables (TWh)						0.0
Total (TWh)	3,698 3,997 4,271 4,516 4,703	B Total (TWh)						37.8
Installed Generating Capacity	pacity	Installed Generating Capa	acity					
Coal (GW)	315.3 310.6 310.7 315.2 323.9	9 Coal (GW)						-2.1
Other Fossil (GW)	274.8 334.0 403.4 452.1 493.2	2 Other Fossil (GW)						14.4
Nuclear (GW)	97.5 93.4 84.1 67.4 57.0	0 Nuclear (GW)						0.0
Renewables (GW)	94.7 98.5 101.7 103.8 105.6	6 Renewables (GW)	0.0 0	0.0 0.0	0.0	-0.1	-0.1	-0.1
Total (GW)	782.3 836.5 899.8 938.5 979.7	7 Total (GW)						16.6

Table 11.98 Standard Level 4 Low Economic Growth Forecast based on Reverse Engineering Manufacturing Costs,

NAECA Efficiency Scenario

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Lmac Reference	00]		c Re	ferer	ıce	
								H	Extrapolation	ation
	2000 2005 2010 2015	5 2020		2000 2005	005 2	2010	2015	2020	2020 2025 2030	2030
Residential Sector Energy Consumption	Consumption		Residential Sector Energy	Consumption	otion					
Electricity Sales (TWh) 1,183 1,275 1,356 1,414 1,469	1,183 1,275 1,356 1,41	4 1,469	Electricity Sales (TWh)	0.0	0.0	-10.4	4 -23.8	-35.8	-44.6 -50.6	-50.6
 Total U.S. Electric Generation	 tion		Total U.S. Electric Genera	ation						
Coal (TWh)	1,923 2,105 2,131 2,170	70 2,208	Coal (TWh)	0.0	0.0			-7.6		-7.6
Gas (TWh)	591 683 933 1,178	78 1,311	Gas (TWh)	0.0	0.0	-7.4	-21.9	-26.2	-26.2	-26.2
Petroleum(TWh)	85 60 42 39		Petroleum(TWh)	0.0	0.0			0.8		0.8
Nuclear (TWh)	688 674 627 511	1 428	Nuclear (TWh)	0.0	0.0			0.0		0.0
Renewables (TWh)	388 409 425 433	33 441	Renewables (TWh)	0.0	0.0			-0.4		-0.4
Total (TWh)	3,675 3,931 4,158 4,331	31 4,423	Total (TWh)	0.0	0.0			-33.2		-33.2
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal (GW)	315.3 309.6 308.0 309.4	.4 310.8	Coal (GW)	0.0	0.0	0.0				-0.6
Other Fossil (GW)	275.0 325.3 387.7 426.1	.1 458.7	Other Fossil (GW)	0.0	0.0	-1.3				-13.9
Nuclear (GW)	97.5 93.4 84.1 67.4	.4 57.0	Nuclear (GW)	0.0	0.0	0.0				0.0
Renewables (GW)	94.7 98.3 101.2 103.0	.0 104.4	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.5 826.6 881.0 905.8	.8 930.9	Total (GW)	0.0	0.0	-1.3				-14.5

Table 11.10S Standard Level 4 High Economic Growth Forecast based on Reverse Engineering Manufacturing Costs,

NAECA Efficiency Scenario

		V							
NEMS-BRS Results:	ults:	Difference from A	AEO2000 Hmac Reference	000	Hma	c Re	fere	nce	
							н	Extrapolation	ation
	2000 2005 2010 2015 2020		2000 2005 2010	2005		2015	2020 2025 2030	2025	2030
Residential Sector Energy Consumption	y Consumption	Residential Sector Energy	y Consumption	ption					
Electricity Sales (TWh)	1,183 1,286 1,379 1,460 1,544	Electricity Sales (TWh)	0.0	0.0	-11.6	-26.2	-38.6	-47.0	-52.6
Total U.S. Electric Generation	ation	Total U.S. Electric Genera	ation						
Coal (TWh)	1,937 2,159 2,230 2,368 2,601	Coal (TWh)	0.0	0.0	-1.4		-28.1	-28.1	-28.1
Gas (TWh)	615 762 1,063 1,357 1,468	Gas (TWh)	0.0	-0.4	-9.2		-9.9	-9.9	-9.9
Petroleum(TWh)	95 83 74 65 70	Petroleum(TWh)	0.0	0.0	-1.6	0.4	1.8	1.8	1.8
Nuclear (TWh)	688 674 627 510 440	Nuclear (TWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 414 435 446 459	Renewables (TWh)	0.0	0.0	-0.1	0.0	-0.3	-0.3	-0.3
Total (TWh)	3,724 4,092 4,429 4,746 5,037	Total (TWh)	0.0	-0.4	-12.3	-27.1	-36.5	-36.5	-36.5
Installed Generating Capacity	acity	Installed Generating Cap	acity						
Coal (GW)	315.3 311.2 315.4 329.8 358.5	Coal (GW)	0.0	0.0	0.0	-1.1		-3.5	-3.5
Other Fossil (GW)	274.8 340.1 426.3 481.9 516.7	Other Fossil (GW)	0.0	0.0	-1.6	-9.8		-12.5	-12.5
Nuclear (GW)	97.5 93.4 84.1 67.4 58.7	Nuclear (GW)	0.0	0.0	0.0	0.0		0.0	0.0
Renewables (GW)	94.9 99.1 102.7 105.1 107.5	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.5 843.8 928.5 984.3 1,041.4	Total (GW)	0.0	0.0	-1.6	-10.8		-16.0	-16.0

Table 11.7A Standard Level 4 Roll-up Forecast based on ARI Mean Manufacturing Costs

NEMS-BRS Results:	ults:		Difference from A	AEO2000 Reference	00	Refe	renc	P		
								н	Extrapolation	ation
	2000 2005 2010 2015	2020		2000 2005 2010	005 2	010	2015	2020	2025	2030
Residential Sector Energy Consumption	y Consumption		Residential Sector Energy	y Consumption						
Electricity Sales (TWh)	1,185 1,281 1,369 1,440 1,518	1,518	Electricity Sales (TWh)	0.0	0.0	-10.4	-23.8	-35.4	-43.3	-48.4
Total U.S. Electric Generation	ation		Total U.S. Electric Generation	ution						
Coal (TWh)	1,930 2,127 2,172 2,246	2,333	Coal (TWh)	0.0			-5.5		-14.2	-14.2
Gas (TWh)	1,278	1,455	Gas (TWh)	0.0			-19.1		-21.2	-21.2
Petroleum(TWh)		46	Petroleum(TWh)	0.0	0.0	-0.7	0.3	1.6	1.6	1.6
Nuclear (TWh)	688 674 627 511	427	Nuclear (TWh)	0.0			0.0		0.0	0.0
Renewables (TWh)	389 411 429 437	447	Renewables (TWh)	0.0			0.3		0.0	0.0
Total (TWh)	3,698 3,997 4,273 4,519	4,707	Total(TWh)	0.0			-24.0		-33.8	-33.8
Installed Generating Capacity	acity		Installed Generating Capa	acity						
Coal (GW)	5.3 310.6 310.7 315.3	324.2	Coal (GW)	0.0	0.0	0.0			-1.8	-1.8
Other Fossil (GW)	274.8 334.0 403.4 453.0	494.5	Other Fossil (GW)	0.0	0.0	-1.3			-13.1	-13.1
Nuclear (GW)	67.4	57.0	Nuclear (GW)	0.0	0.0	0.0			0.0	0.0
Renewables (GW)	94.7 98.5 101.7 103.8	105.7	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.3 836.5 899.9 939.5	981.3	Total (GW)	0.0	0.0	-1.3			-15.0	-15.0

Table 11.8A Standard Level 4 Shift Forecast based on ARI Mean Manufacturing Costs

NEMS-BRS Results:	ults:	Difference from A	AEO2000 Reference	00	Refe	renc	e		
							H	Extrapolation	ation
	2000 2005 2010 2015 2020		2000 2005 2010	005 2	010	2015	2020 2025 2030	2025	2030
Residential Sector Energy Consumption	y Consumption	Residential Sector Energy	y Consumption	otion					
Electricity Sales (TWh)	1,185 1,281 1,368 1,438 1,513	Electricity Sales (TWh)	0.0	0.0 -11.4		-26.5	-39.6	-48.6	-54.5
 Total U.S. Electric Generation	ation	Total U.S. Electric Genera	_ 						
Coal (TWh)	1,930 2,127 2,171 2,244 2,331	Coal (TWh)	0.0	0.0		-6.5		-16.0	-16.0
Gas (TWh)	992 1,276	Gas (TWh)	0.0	0.0		-21.1		-23.7	-23.7
Petroleum(TWh)	90 68 53 47 46	Petroleum(TWh)	0.0	0.0		0.2		2.1	2.1
Nuclear (TWh)	688 674 627 511 427	Nuclear (TWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 411 429 437 447	Renewables (TWh)	0.0	0.0		0.4		0.0	0.0
Total (TWh)	3,698 3,997 4,272 4,516 4,703	Total (TWh)	0.0	0.0		-27.0		-37.5	-37.5
Installed Generating Capacity	acity	Installed Generating Capa	acity						
Coal (GW)	315.3 310.6 310.7 315.2 323.9	Coal (GW)	0.0	0.0	_	-0.6		-2.1	-2.1
Other Fossil (GW)	274.8 334.0 403.3 452.2 493.3	Other Fossil (GW)	0.0	0.0	•	-9.6		-14.3	-14.3
Nuclear (GW)	97.5 93.4 84.1 67.4 57.0	Nuclear (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (GW)	94.7 98.5 101.7 103.8 105.7	Renewables (GW)	0.0	0.0	_	0.0		0.0	0.0
Total (GW)	782.3 836.5 899.8 938.7 979.9	Total (GW)	0.0	0.0	Ι΄.	-10.1		-16.4	-16.4

Table 11.9A Standard Level 4 Low Economic Growth Forecast based on ARI Mean Manufacturing Costs,

NAECA Efficiency Scenario

NEMS-BRS Results:				Difference from A	VEO2000 Lmac Reference		ם אם כ	, ב ב	5		
					(ICI CII	CC	
									H	xtrapola	ation
000 2005	2010		2020		2000 2	005 2	2010 2	2015 2	2020 2	2025	2030
nsumption	1				Consump	otion					
,183 1,275	1,356	1,415	1,470		0.0	0.0		-23.4	-35.4	-44.3	-50.4
7				Total U.S. Electric General	ion						
,923 2,105	2,132	2,170	2,209	Coal (TWh)	0.0	0.0					-7.1
591 683	932	1,179	1,312	Gas (TWh)	0.0	0.0					-25.4
85 60	42	39	35	Petroleum(TWh)	0.0	0.0					0.5
688 674	627	511	428	Nuclear (TWh)	0.0	0.0					0.0
	425	433	441	Renewables (TWh)	0.0	0.0					-0.1
,675 3,931	4,159		4,424	Total (TWh)	0.0	0.0					-32.2
Ÿ				Installed Generating Capa	city						
$\ddot{\omega}$	308.0	309.4	310.8	Coal (GW)	0.0	0.0	0.0				-0.6
	387.7	426.4	459.2	Other Fossil (GW)	0.0	0.0	-1.3				-13.4
	84.1	67.4	57.0	Nuclear (GW)	0.0	0.0	0.0				0.0
	101.2	103.0	104.4	Renewables (GW)	0.0	0.0	0.0				0.0
82.5 826.6	881.0		931.5	Total (GW)	0.0	0.0	-1.3				-13.9
	Residential Sector Energy 2000 2005 Electricity Sales (TWh) 1,183 1,275 Total U.S. Electric Generation 1,923 2,105 Coal (TWh) 591 683 Petroleum (TWh) 85 60 Nuclear (TWh) 88 674 Renewables (TWh) 3,675 3,931 Installed Generating Capacity 315.3 309.6 Coal (GW) 315.3 309.6 Other Fossil (GW) 275.0 325.3 Nuclear (GW) 94.7 98.3 Total (GW) 98.5 826.6	Residential Sector Energy Consumption Electricity Sales (TWh) 1,183 1,275 1,356 Total U.S. Electric Generation 1,923 2,105 2,132 Coal (TWh) 85 60 42 Nuclear (TWh) 88 674 627 Renewables (TWh) 3,675 3,931 4,159 Installed Generating Capacity 315.3 309.6 308.0 Other Fossil (GW) 275.0 325.3 387.7 Nuclear (GW) 97.5 93.4 84.1 Renewables (GW) 94.7 98.3 101.2 Total (GW) 782.5 826.6 881.0	90 2005 2010 2015 sumption 83 1,275 1,356 1,415 23 2,105 2,132 2,170 91 683 932 1,179 85 60 42 39 88 674 627 511 88 409 425 433 75 3,931 4,159 4,332 5.3 309.6 308.0 309.4 6.0 325.3 387.7 426.4 7.5 93.4 84.1 67.4 4.7 98.3 101.2 103.0 2.5 826.6 881.0 906.2	90 2005 2010 2015 sumption 1,415 83 1,275 1,356 1,415 23 2,105 2,132 2,170 91 683 932 1,179 85 60 42 39 88 674 627 511 88 409 425 433 75 3,931 4,159 4,332 5.3 309.6 308.0 309.4 5.0 325.3 387.7 426.4 7.5 93.4 84.1 67.4 4.7 98.3 101.2 103.0 2.5 826.6 881.0 906.2	DO 2005 2010 2015 2020 Residential Sector Energy 83 1,275 1,356 1,415 1,470 Flectricity Sales (TWh) 23 2,105 2,132 2,170 2,209 Total U.S. Electric General 91 683 932 1,179 1,312 Coal (TWh) 85 60 42 39 35 Petroleum (TWh) 88 674 627 511 428 Nuclear (TWh) 88 409 425 433 441 Renewables (TWh) 75 3,931 4,159 4,332 4,424 Installed Generating Capa 5.0 325.3 387.7 426.4 459.2 Installed Generating Capa 7.5 93.4 84.1 67.4 57.0 Coal (GW) Nuclear (GW) Nuclear (GW) Nuclear (GW) Total (GW) Nuclear (GW) Total (GW)	DO 2005 2010 2015 2020 Residential Sector Energy 83 1,275 1,356 1,415 1,470 Flectricity Sales (TWh) 23 2,105 2,132 2,170 2,209 Total U.S. Electric General 23 2,105 42,33 3,179 1,312 Coal (TWh) 85 60 42 39 35 Petroleum (TWh) 88 674 627 511 428 Petroleum (TWh) 88 409 425 433 441 Renewables (TWh) 75 3,931 4,159 4,332 4,424 Total (TWh) 5.3 309.6 308.0 309.4 310.8 Installed Generating Capa 5.0 325.3 387.7 426.4 459.2 Coal (GW) 7.5 93.4 84.1 67.4 57.0 Nuclear (GW) Nuclear (GW) Nuclear (GW) Nuclear (GW) Total (GW) Nuclear (GW) Total (GW)	DO 2005 2010 2015 2020 Residential Sector Energy 83 1,275 1,356 1,415 1,470 Flectricity Sales (TWh) 23 2,105 2,132 2,170 2,209 Total U.S. Electric General 91 683 932 1,179 1,312 Coal (TWh) 85 60 42 39 35 Petroleum (TWh) 88 674 627 511 428 Nuclear (TWh) 88 409 425 433 441 Renewables (TWh) 75 3,931 4,159 4,332 4,424 Installed Generating Capa 5.0 325.3 387.7 426.4 459.2 Installed Generating Capa 7.5 93.4 84.1 67.4 57.0 Coal (GW) Nuclear (GW) Nuclear (GW) Nuclear (GW) Total (GW) Nuclear (GW) Total (GW)	DO 2005 2010 2015 2020 Residential Sector Energy 83 1,275 1,356 1,415 1,470 Flectricity Sales (TWh) 23 2,105 2,132 2,170 2,209 Total U.S. Electric General 91 683 932 1,179 1,312 Coal (TWh) 85 60 42 39 35 Petroleum (TWh) 88 674 627 511 428 Nuclear (TWh) 88 409 425 433 441 Renewables (TWh) 75 3,931 4,159 4,332 4,424 Total (TWh) 5.0 325.3 387.7 426.4 459.2 Installed Generating Capa 6.0 325.3 387.7 426.4 459.2 Other Fossil (GW) 7.5 93.4 84.1 67.4 57.0 Nuclear (GW) 8.5 826.6 881.0 906.2 931.5 Total (GW)	DO 2005 2010 2015 2020 Residential Sector Energy 83 1,275 1,356 1,415 1,470 Flectricity Sales (TWh) 23 2,105 2,132 2,170 2,209 Total U.S. Electric General 91 683 932 1,179 1,312 Coal (TWh) 85 60 42 39 35 Petroleum (TWh) 88 674 627 511 428 Nuclear (TWh) 88 409 425 433 441 Renewables (TWh) 75 3,931 4,159 4,332 4,424 Total (TWh) 5.0 325.3 387.7 426.4 459.2 Installed Generating Capa 7.5 93.4 84.1 67.4 57.0 Coal (GW) Nuclear (GW) Nuclear (GW) Nuclear (GW) Renewables (GW) Nuclear (GW) Renewables (GW) Nuclear (GW) Renewables (GW)	90 2005 2010 2015 2020 Residential Sector Energy Consumption 2000 2005 2010 2015 2020 2020 2010 2015 2020 2020 2020 Residential Sector Energy Consumption 2000 2005 2010 2015 2020 2020 2010 2015 2020 2020 2020	Dot 2005 2010 2015 2020 Extrapol 2005 2010 2015 2020 Extrapol 2025 2010 2015 2020 Extrapol 2025 2010 2015 2020 2025

Table 11.10A Standard Level 4 High Economic Growth Forecast based on ARI Mean Manufacturing Costs,

NAECA Efficiency Scenario

		•							
NEMS-BRS Results:	ults:	Difference from A	AEO2000 Hmac Reference	00]	Hma	c Re	fere	nce	
								Extrapolation	ation
	2000 2005 2010 2015 2020		2000 2005 2010	005 2	2010	2015	2020	2020 2025 2030	2030
Residential Sector Energy Consumption	y Consumption	Residential Sector Energy	Consumption	otion					
Electricity Sales (TWh)	1,183 1,286 1,380 1,460 1,545	Electricity Sales (TWh)	0.0	0.0 -11.4	-11.4	-25.8	-38.2	-46.6 -52.3	-52.3
Total U.S. Electric Generation	ation	Total U.S. Electric Genera	_ ation						
Coal (TWh)	1,937 2,159 2,229 2,368 2,601	Coal (TWh)			-2.1	-11.1	-27.8	-27.8	-27.8
Gas (TWh)	615 762 1,064 1,358 1,469	Gas (TWh)			-8.2	-15.1	-8.8	-8.8	-8.8
Petroleum(TWh)	95 83 74 65 70	Petroleum(TWh)			-1.8	0.0	1.5	1.5	1.5
Nuclear (TWh)	688 674 627 510 440	Nuclear (TWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renewables (TWh)	389 414 435 446 459	Renewables (TWh)			-0.1	0.0	-0.2	-0.2	-0.2
Total (TWh)	3,724 4,092 4,429 4,747 5,039	Total (TWh)			-12.2	-26.2	-35.4	-35.4	-35.4
Installed Generating Capacity	acity	Installed Generating Capo	acity						
Coal (GW)	315.3 311.2 315.4 329.9 358.6	Coal (GW)	0.0	0.0	0.0		-3.4	-3.4	-3.4
Other Fossil (GW)	274.8 340.1 426.5 482.0 517.1	Other Fossil (GW)	0.0	0.0	-1.4		-12.1	-12.1	-12.1
Nuclear (GW)	97.5 93.4 84.1 67.4 58.7	Nuclear (GW)	0.0	0.0	0.0		0.0	0.0	0.0
Renewables (GW)	94.9 99.1 102.7 105.1 107.5	Renewables (GW)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total (GW)	782.5 843.8 928.7 984.4 1,041.8	Total (GW)	0.0	0.0	-1.4		-15.6	-15.6	-15.6

J.6 SUPPLEMENTAL TABLES AND FIGURES TO CHAPTER 12

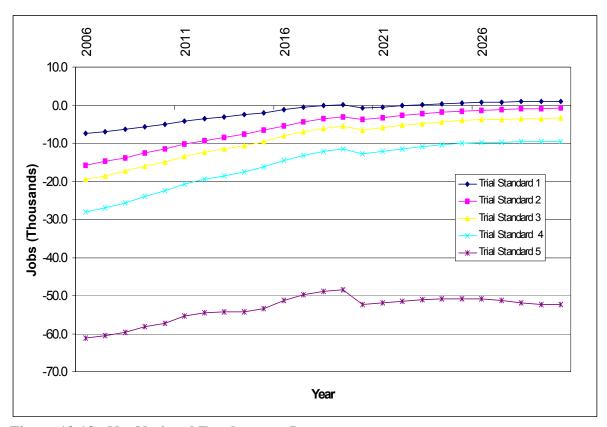


Figure 12.18 Net National Employment Impacts

Table 12.1S Net National Change in Jobs

Trial Standard Level	2010 (thousands)	2020 (thousands)	2030 (thousands)
1	-4.9	-0.8	1.0
2	-11.5	-3.8	-0.9
3	-14.9	-6.5	-3.4
4	-22.6	-12.8	-9.5
5	-57.3	-52.4	-52.5

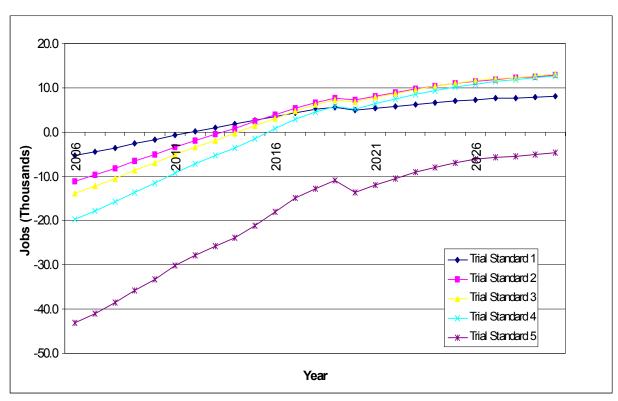


Figure 12.2S Employment Impacts of Consumer Savings

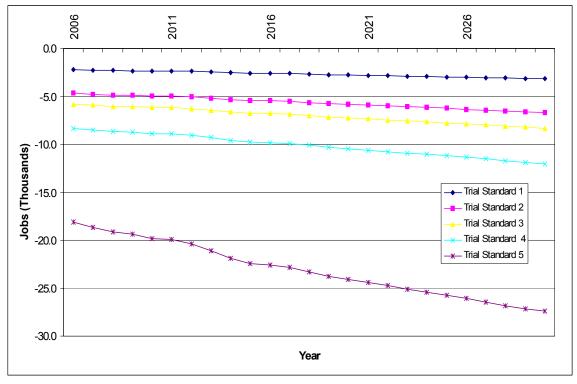


Figure 12.3S Economic Impacts of Changes in Equipment Cost

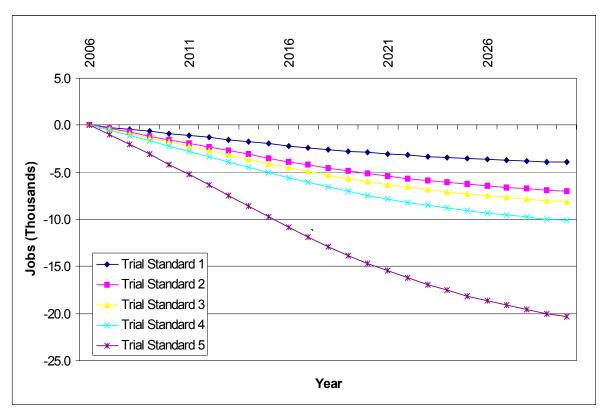


Figure 12.4S Economic Impacts of Changes in Utility Savings

J.7 SUPPLEMENTAL FIGURES TO APPENDIX E



Figure E.18 Split A/C, 11 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

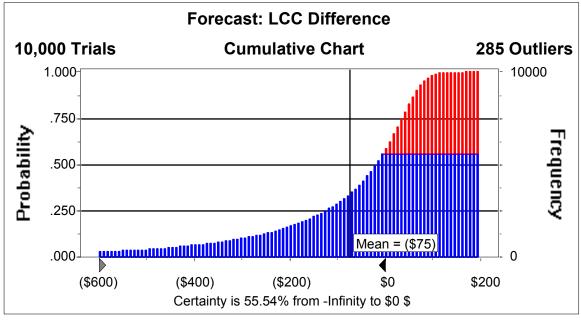


Figure E.2S Split A/C, 11 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

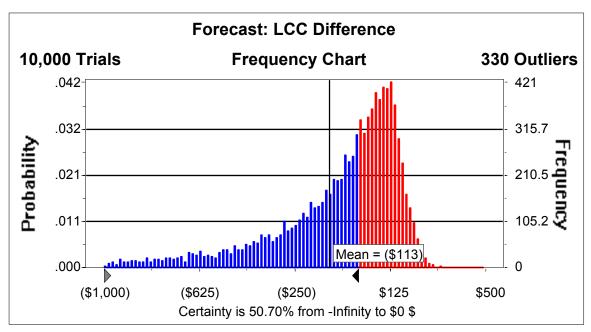


Figure E.3S Split A/C, 12 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

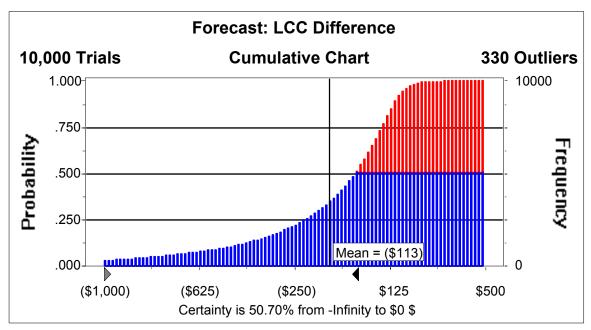


Figure E.4S Split A/C, 12 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

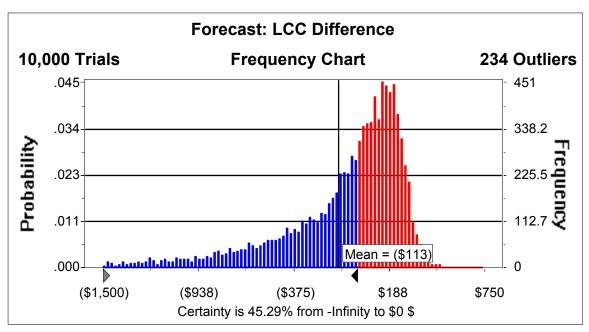


Figure E.5S Split A/C, 13 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

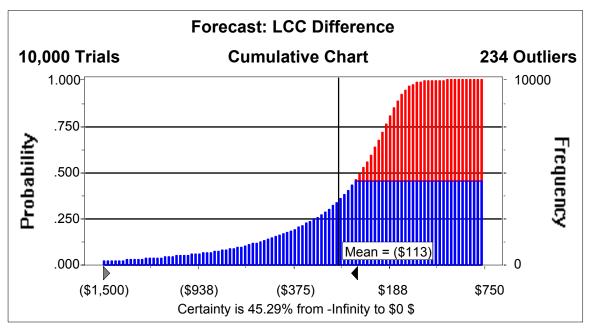


Figure E.6S Split A/C, 13 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

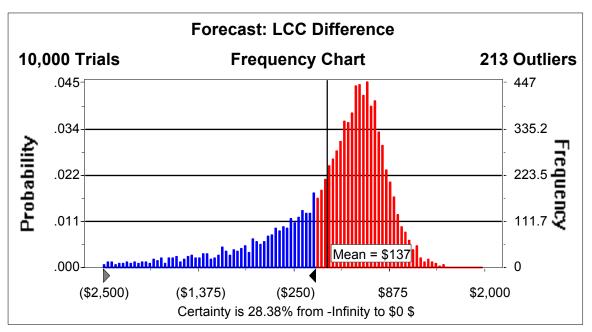


Figure E.7S Split A/C, 18 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

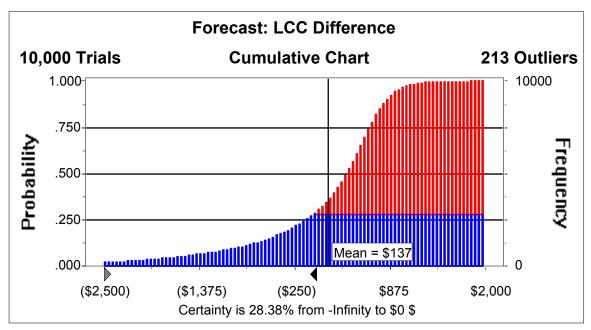


Figure E.8S Split A/C, 18 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

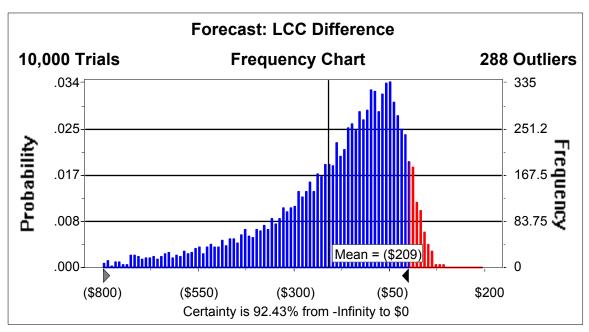


Figure E.9S Split HP, 11 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

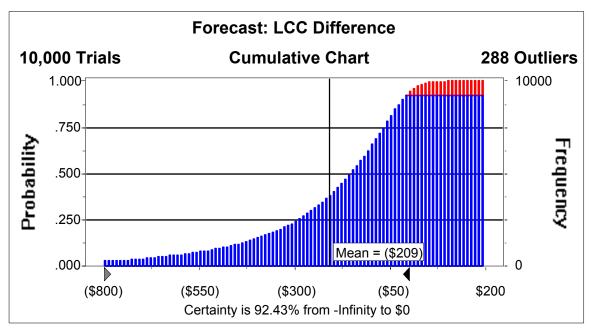


Figure E.10S Split HP, 11 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

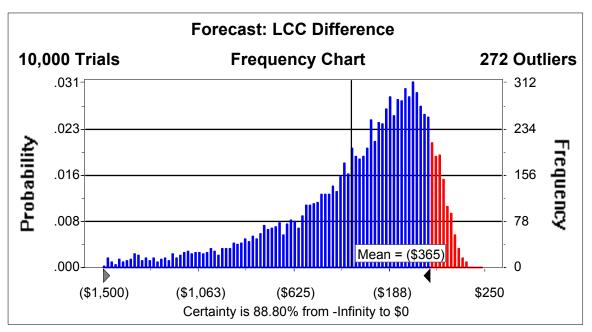


Figure E.11S Split HP, 12 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

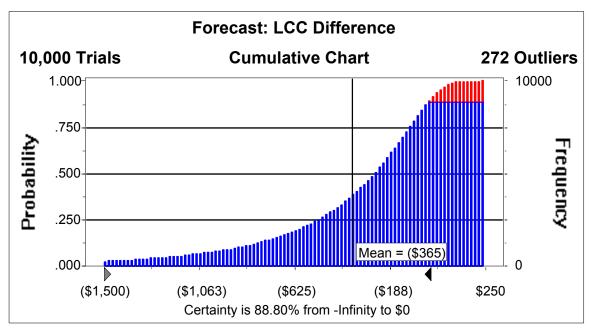


Figure E.12S Split HP, 12 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

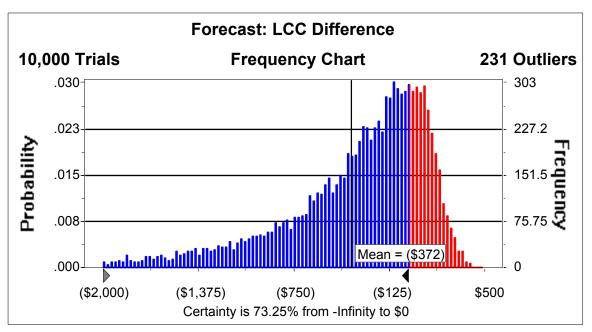


Figure E.13S Split HP, 13 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

Figure E.14S Split HP, 13 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

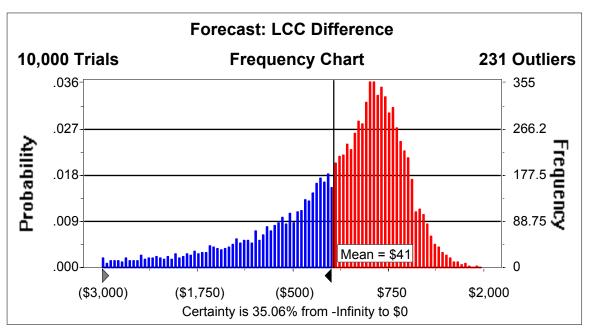


Figure E.15S Split HP, 18 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

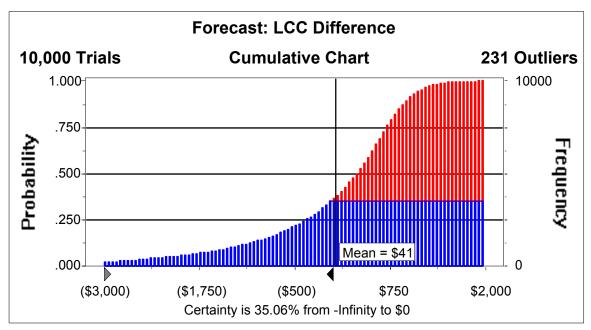


Figure E.16S Split HP, 18 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

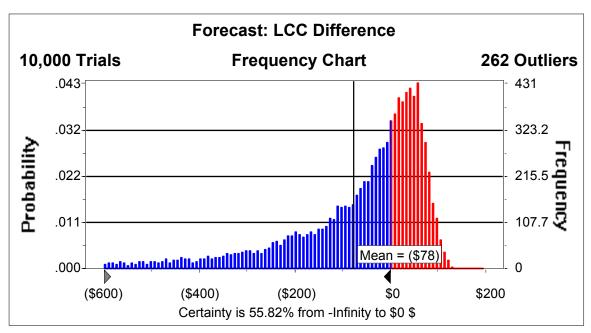


Figure E.17S Single Package A/C, 11 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

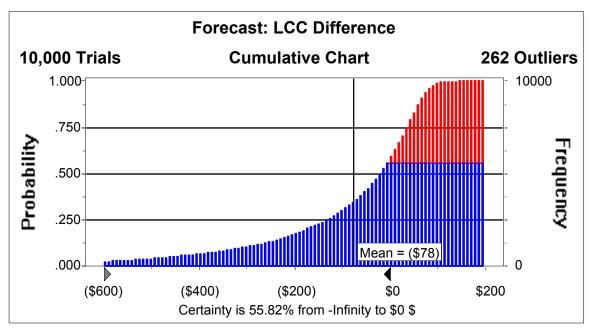


Figure E.18S Single Package A/C, 11 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

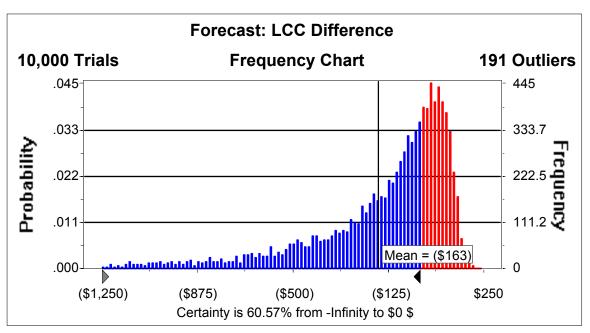


Figure E.19S Single Package A/C, 12 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

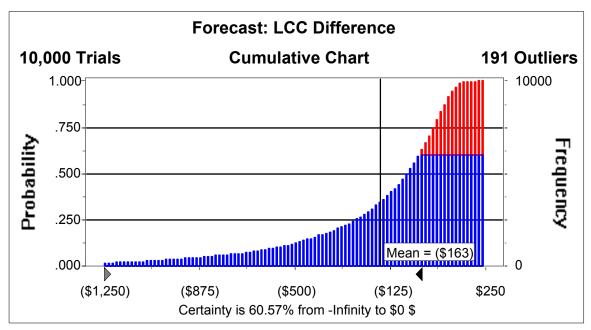


Figure E.20S Single Package A/C, 12 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

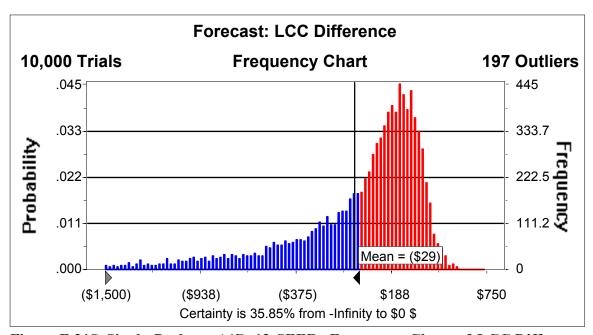


Figure E.21S Single Package A/C, 13 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

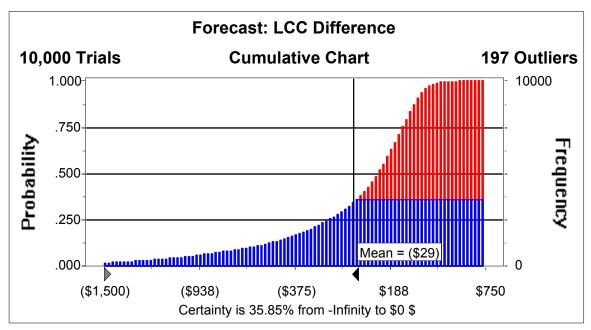


Figure E.22S Single Package A/C, 13 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

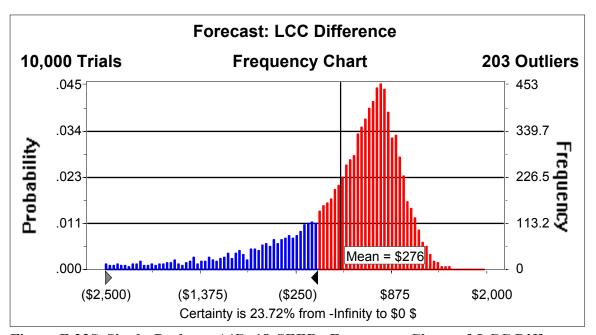


Figure E.23S Single Package A/C, 18 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

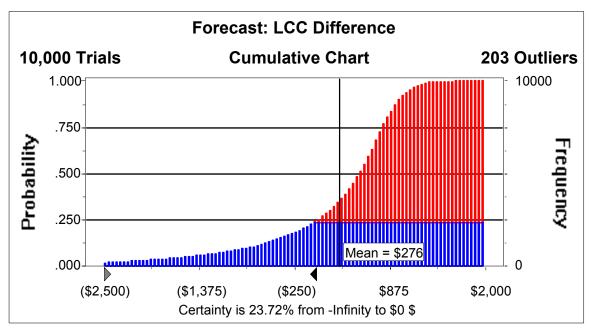


Figure E.24S Single Package A/C, 18 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

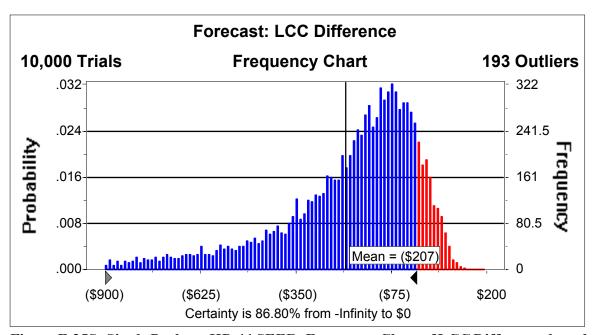


Figure E.25S Single Package HP, 11 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

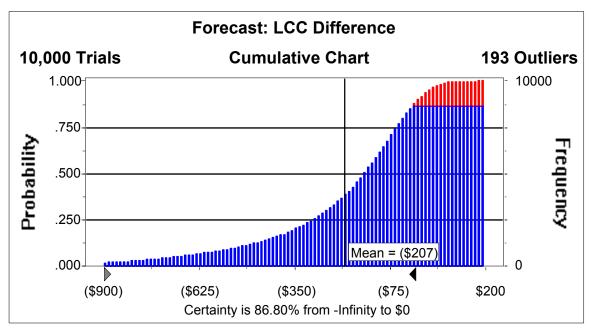


Figure E.26S Single Package HP, 11 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

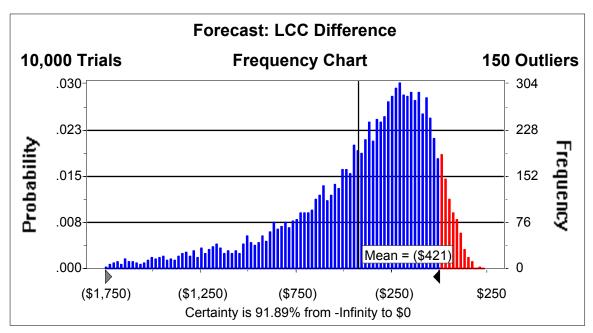


Figure E.27S Single Package HP, 12 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

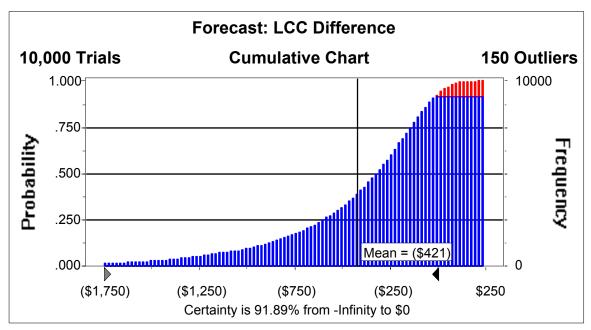


Figure E.28S Single Package HP, 12 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

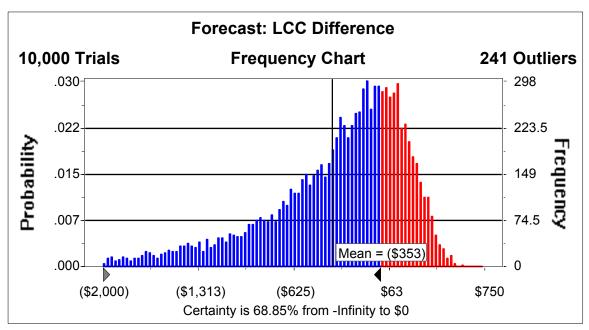


Figure E.29S Single Package HP, 13 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

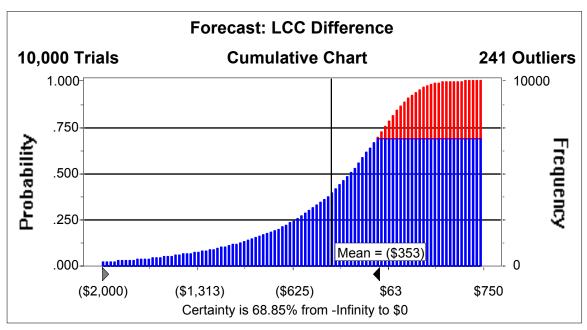


Figure E.30S Single Package HP, 13 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

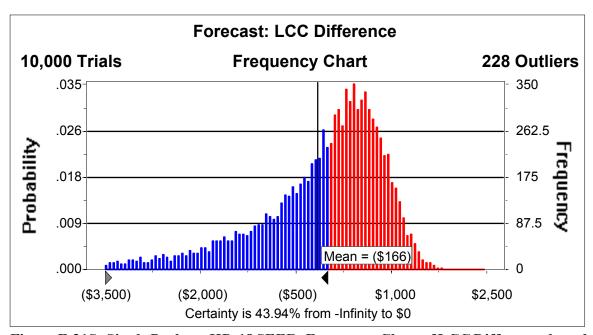


Figure E.31S Single Package HP, 18 SEER: Frequency Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

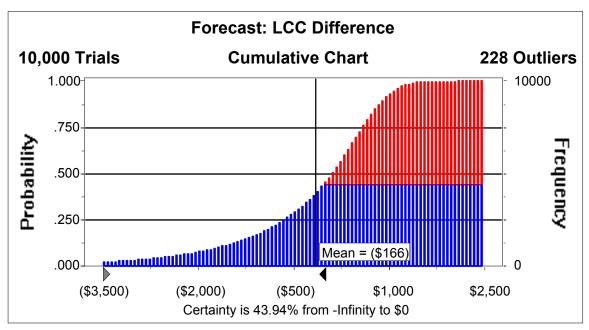


Figure E.32S Single Package HP, 18 SEER: Cumulative Chart of LCC Difference based on Reverse Engineering Manufacturing Costs

J.8 SUPPLEMENTAL TABLES AND FIGURES TO APPENDIX F

Table F.1.18 Split A/C, 11 SEER: Energy Savings based on Rev Eng Manufacturing Costs

		Energy Sa	aving in Q	ads	
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.07	0.07	0.00	0.00	0.00
to 2020	0.45	0.45	0.00	0.00	0.00
to 2030	1.05	1.05	0.00	0.00	0.00

Table F.1.2S Split A/C, 11 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Standards i	n 2006:	11 SEER	
Cost and Net 1	Present Valu	ues (in billion 1998\$)	
Cumulative for Split A/C Purch Discounted at 7% to year 1998		2006 to 2030	
Total Operating Savings			3.23
Total Equipment Cost			2.56
Net Present Benefit			0.68
Benefit/Cost Ratio			1.26

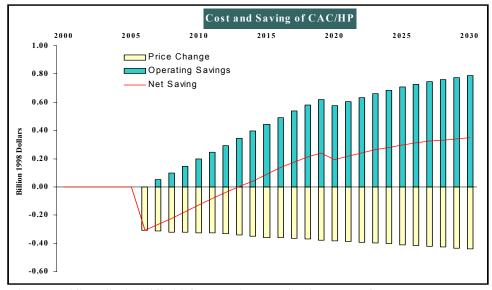


Figure F.1S Split A/C, 11 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.2.18 Split A/C, 12 SEER: Energy Savings based on Rev Eng Manufacturing Costs

		Energy Sa	aving in Qu	ads	
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.12	0.12	0.00	0.00	0.00
to 2020	0.79	0.79	0.00	0.00	0.00
to 2030	1.84	1.84	0.00	0.00	0.00

Table F.2.2S Split A/C, 12 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Standa	rds in 2006:	12 SEER	
Cost and I	Net Present Valu	ies (in billion 1998\$)	
Consolative for Sult A/CI	humbagad fuana 1	007 42 2020	
Cumulative for Split A/C F	urchased from 2	000 to 2030	
Discounted at 7% to year	1998		
Total Operating Saving	S		5.84
Total Equipment Cost			5.48
Net Present Benefit			0.36
Benefit/Cost Ratio			1.07

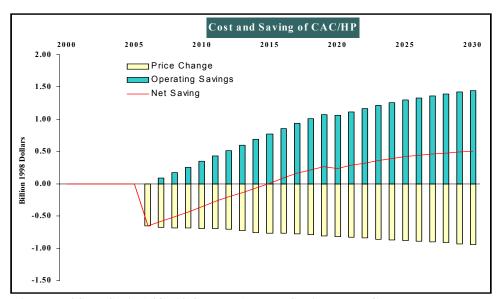


Figure F.2S Split A/C, 12 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.3.18 Split A/C, 13 SEER: Energy Savings based on Rev Eng Manufacturing Costs

		Energy Sa	aving in Qu	ads	
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.16	0.16	0.00	0.00	0.00
to 2020	1.11	1.11	0.00	0.00	0.00
to 2030	2.60	2.60	0.00	0.00	0.00

Table F.3.2S Split A/C, 13 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	8
CAC/HP Standards in 2006:	13 SEER
	1000
Cost and Net Present Values (i	n billion 1998\$)
Cumulative for Split A/C Purchased from 2006 t	o 2030
Discounted at 7% to year 1998	
Total Operating Savings	8.19
Total Equipment Cost	8.68
Net Present Benefit	-0.50
Benefit/Cost Ratio	0.94

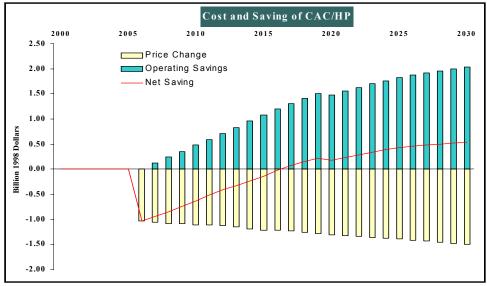


Figure F.3S Split A/C, 13 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.4.18 Split A/C, 18 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.30	0.30	0.00	0.00	0.00
to 2020	2.09	2.09	0.00	0.00	0.00
to 2030	5.00	5.00	0.00	0.00	0.00
10 2000	2.00	2.00	3.00	3.00	0.00

Table F.4.2S Split A/C, 18 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	-		
CAC/HP Standards in	12006:	18 SEER	
Cost and Net P	resent Valu	ues (in billion 1998\$)	
Cumulative for Split A/C Purcha	sed from 2	006 to 2030	
Discounted at 7% to year 1998			
Total Operating Savings			11.77
Total Equipment Cost			18.43
Net Present Benefit			-6.67
Benefit/Cost Ratio			0.64

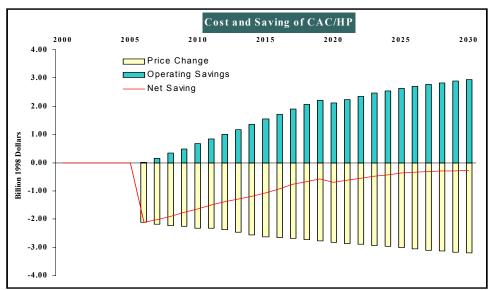


Figure F.4S Split A/C, 18 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.5.1S Split HP, 11 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.03	0.03	0.00	0.00	0.00
to 2020	0.19	0.19	0.00	0.00	0.00
to 2030	0.45	0.45	0.00	0.00	0.00

Table F.5.2S Split HP, 11 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

8		
CAC/HP Standards in 2006:	11 SEER	
Cost and Net Present	Values (in billion 1998\$)	
Cumulative for Split HP Purchased from	m 2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		1.18
Total Equipment Cost		0.48
Net Present Benefit		0.70
Benefit/Cost Ratio		2.47

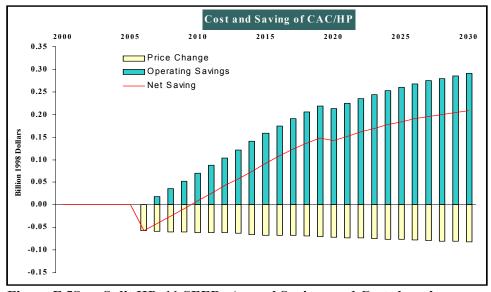


Figure F.5S Split HP, 11 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.6.1S Split HP, 12 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.05	0.05	0.00	0.00	0.00
to 2020	0.35	0.35	0.00	0.00	0.00
to 2030	0.82	0.82	0.00	0.00	0.00

Table F.6.28 Split HP, 12 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Stand	lards in 2006:	12 SEER	
Cost and	l Net Present Valu	ues (in billion 1998\$)	
Cumulative for Split HP	Purchased from 20	006 to 2030	
Discounted at 7% to yea	r 1998		
Total Operating Savin	ıgs		2.18
Total Equipment Cost			1.08
Net Present Benefit			1.09
Benefit/Cost Ratio			2.01

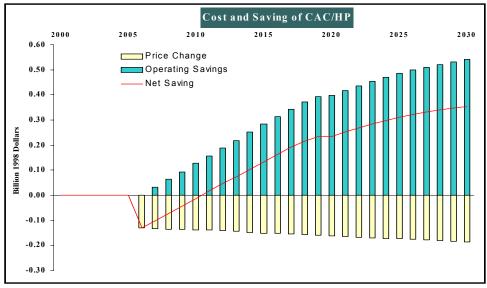


Figure F.6S Split HP, 12 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.7.1S Split HP, 13 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.08	0.08	0.00	0.00	0.00
to 2020	0.53	0.53	0.00	0.00	0.00
to 2030	1.24	1.24	0.00	0.00	0.00

Table F.7.28 Split HP, 13 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Sta	indards in 2006:	13 SEER	
Cost a	nd Net Present Valu	ies (in billion 1998\$)	
Cumulative for Split H	P Purchased from 20	006 to 2030	
Discounted at 7% to y	ear 1998		
·			
Total Operating Sa	vings		3.29
Total Equipment Co	ost		2.53
Net Present Benefi	t		0.76
Benefit/Cost Ratio			1.30

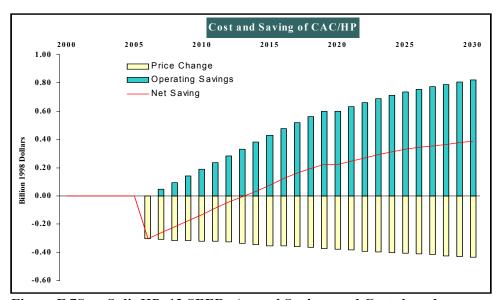


Figure F.7S Split HP, 13 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.8.1S Split HP, 18 SEER: Energy Savings based on Rev Eng Manufacturing Costs

otal	Elec	Gas	Oil	LPG
0.16	0.16	0.00	0.00	0.00
1.09	1.09	0.00	0.00	0.00
2.60	2.60	0.00	0.00	0.00
	0.16 1.09	0.16 0.16 1.09 1.09	0.16	0.16 0.16 0.00 0.00 1.09 1.09 0.00 0.00

Table F.8.2S Split A/C, 18 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	-		
CAC/HP Standards in 2	2006:	18 SEER	
Cost and Net Pre	esent Valu	es (in billion 1998\$)	
	16 20	2020	
Cumulative for Split HP Purchase	ed from 20	06 to 2030	
Discounted at 7% to year 1998			
Total Operating Savings			5.15
Total Equipment Cost			7.49
Net Present Benefit			-2.34
Benefit/Cost Ratio			0.69

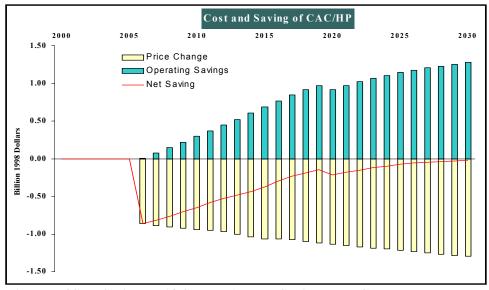


Figure F.8S Split HP, 18 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.9.18 Pack. A/C, 11 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.01	0.01	0.00	0.00	0.00
to 2020	0.06	0.06	0.00	0.00	0.00
to 2030	0.13	0.13	0.00	0.00	0.00

Table F.9.28 Pack. A/C, 11 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	8
CAC/HP Standards in 2006: 1	11 SEER
Cost and Net Present Values (in b	pillion 1998\$)
Cumulative for Package A/C Purchased from 2006	i to 2030
Discounted at 7% to year 1998	
Total Operating Savings	0.42
Total Equipment Cost	0.30
Net Present Benefit	0.12
Benefit/Cost Ratio	1.39

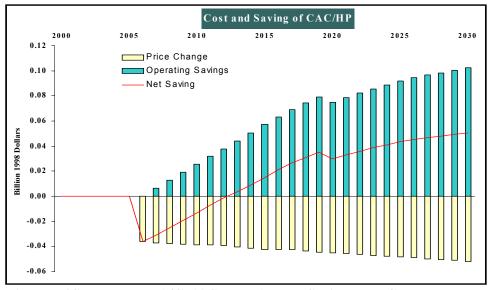


Figure F.9S Package A/C, 11 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.10.1S Pack. A/C, 12 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.01	0.01	0.00	0.00	0.00
to 2020	0.10	0.10	0.00	0.00	0.00
to 2030	0.23	0.23	0.00	0.00	0.00

Table F.10.2S Pack. A/C, 12 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Standards in 2006:	12 SEER	
Cost and Net Present Value	s (in billion 1998\$)	
Cumulative for Package A/C Purchased from	n 2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		0.72
Total Equipment Cost		0.52
Net Present Benefit		0.20
Benefit/Cost Ratio		1.39

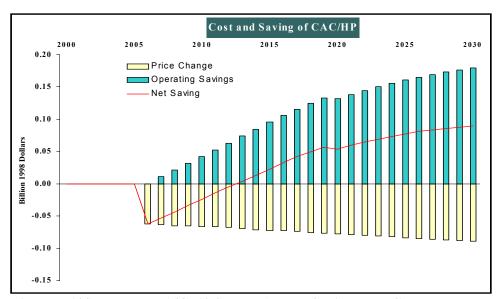


Figure F.10S Package A/C, 12 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.11.1S Pack. A/C, 13 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.02	0.02	0.00	0.00	0.00
to 2020	0.13	0.13	0.00	0.00	0.00
to 2030	0.31	0.31	0.00	0.00	0.00

Table F.11.2S Pack. A/C, 13 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	8	
CAC/HP Standards in 2006:	13 SEER	
Cost and Net Present Valu	es (in billion 1998\$)	
Cumulative for Package A/C Purchased fro	om 2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		0.98
Total Equipment Cost		1.28
Net Present Benefit		-0.30
Benefit/Cost Ratio		0.77

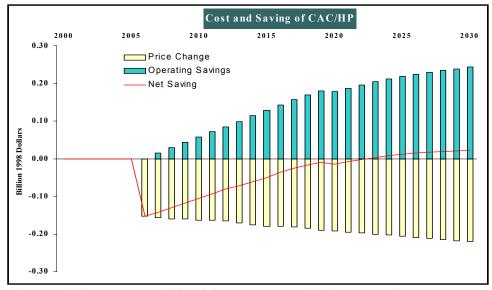


Figure F.11S Package A/C, 13 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.12.1S Pack. A/C, 18 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.03	0.03	0.00	0.00	0.00
to 2020	0.24	0.24	0.00	0.00	0.00
to 2030	0.58	0.58	0.00	0.00	0.00

Table F.12.2S Pack. A/C, 18 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

		8	
CAC/HP Standard	ls in 2006:	18 SEER	
Cost and Ne	et Present Valu	ues (in billion 1998\$)	
Cumulative for Package A/C	Purchased fro	om 2006 to 2030	
Discounted at 7% to year 19	98		
Total Operating Savings			1.31
Total Equipment Cost			2.39
Net Present Benefit			-1.09
Benefit/Cost Ratio			0.55

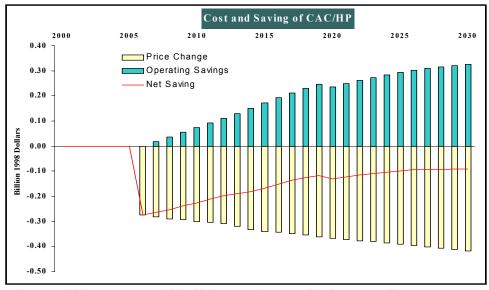


Figure F.12S Package A/C, 18 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.13.1S Pack. HP, 11 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.00	0.00	0.00	0.00	0.00
to 2020	0.03	0.03	0.00	0.00	0.00
to 2030	0.07	0.07	0.00	0.00	0.00

Table F.13.2S Pack. HP, 11 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Standards in 2006:	11 SEER	
Cost and Net Present Valu	es (in billion 1998\$)	
Cumulative for Package HP Purchased from	m2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		0.19
Total Equipment Cost		0.10
Net Present Benefit		0.09
Benefit/Cost Ratio		1.88

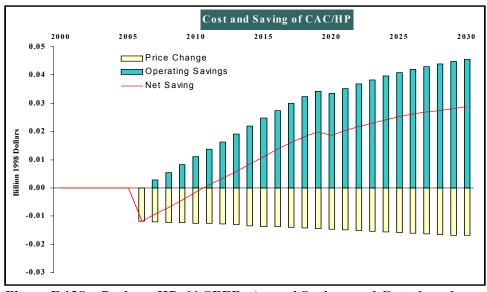


Figure F.13S Package HP, 11 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.14.1S Pack. HP, 12 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.01	0.01	0.00	0.00	0.00
to 2020	0.05	0.05	0.00	0.00	0.00
to 2030	0.12	0.12	0.00	0.00	0.00

Table F.14.28 Pack. HP, 12 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	· · · · · · · · · · · · · · · · · · ·	
CAC/HP Standards in 2006:	12 SEER	
Cost and Net Present Valu	es (in billion 1998\$)	
Cumulative for Package HP Purchased from	m2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		0.33
Total Equipment Cost		0.16
Net Present Benefit		0.17
Benefit/Cost Ratio		2.07

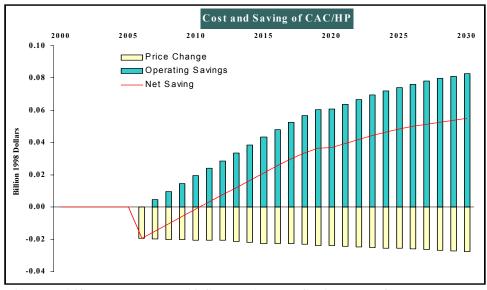


Figure F.14S Package HP, 12 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.15.1S Pack. HP, 13 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads				
	Total	Elec	Gas	Oil	LPG
from 2006					
to 2010	0.01	0.01	0.00	0.00	0.00
to 2020	0.08	0.08	0.00	0.00	0.00
to 2030	0.19	0.19	0.00	0.00	0.00

Table F.15.28 Pack. HP, 13 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

	8	
CAC/HP Standards in 2006:	13 SEER	
Cost and Net Present Valu	es (in billion 1998\$)	
Cumulative for Package HP Purchased from	n 2006 to 2030	
Discounted at 7% to year 1998		
Total Operating Savings		0.49
Total Equipment Cost		0.46
Net Present Benefit		0.03
Benefit/Cost Ratio		1.06

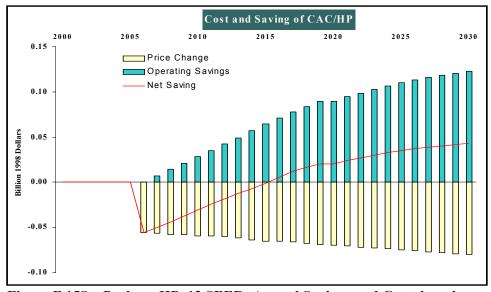


Figure F.15S Package HP, 13 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs

Table F.16.1S Pack. HP, 18 SEER: Energy Savings based on Rev Eng Manufacturing Costs

	Energy Saving in Quads						
	Total	Elec	Gas	Oil	LPG		
from 2006							
to 2010	0.02	0.02	0.00	0.00	0.00		
to 2020	0.15	0.15	0.00	0.00	0.00		
to 2030	0.37	0.37	0.00	0.00	0.00		

Table F.16.2S Pack. HP, 18 SEER: Costs and Net Present Value based on Rev Eng Manufacturing Costs

CAC/HP Standards in 2006:	18 SEER				
Cost and Net Present Values (in billion 1998\$)					
Cumulative for Package HP Purchased from	2006 to 2030				
Discounted at 7% to year 1998					
Total Operating Savings		0.76			
Total Equipment Cost		0.98			
Net Present Benefit		-0.23			
Benefit/Cost Ratio		0.77			

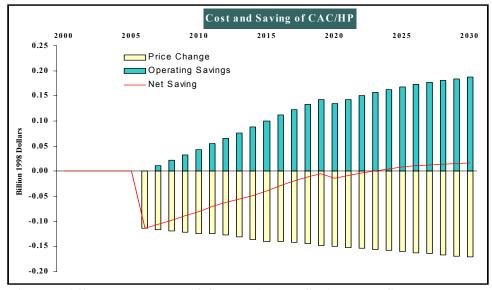


Figure F.16S Package HP, 18 SEER: Annual Savings and Costs based on Reverse Engineering Manufacturing Costs